首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The epoch of reionization (EoR) sets a fundamental benchmark in cosmic structure formation, corresponding to the formation of the first luminous objects that act to ionize the neutral intergalactic medium (IGM). Recent observations at near-IR and radio wavelengths imply that we are finally probing into this key epoch of galaxy formation at z 6. The Square Kilometer Array (SKA) will provide critical insight into the EoR, in a number of ways. First, the ability of the SKA to image the neutral IGM in 21-cm emission is a truly unique probe of the process of reionization, and is recognized as the next necessary and fundamental step in our study of the evolution of large scale structure and cosmic reionization. Second, study of HI 21-cm absorption toward the first radio loud objects probes small to intermediate scale structure in the neutral ‘cosmic web’, as well as HI in the first collapsed structures (proto-disks and mini-halos). And third, the incomparable sensitivity of the SKA allows for the study of the molecular gas, dust, and star formation activity in the first galaxies, as well as the radio continuum emission from the first accreting massive black holes. Such objects will be obscured at optical wavelengths due to absorption by the neutral IGM.  相似文献   

2.
The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes.In deep surveys SKA will be able to detect Hi in emission out to redshifts of z ≈ 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars.These and other aspects of SKA imaging of galaxies will be discussed.  相似文献   

3.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
Elias Brinks   《New Astronomy Reviews》2004,48(11-12):1305
The SKA will revolutionise the study of the principles underlying star formation (SF), resolving interstellar cloud complexes which are the birthplaces of stars and answering such questions as which are the sufficient and necessary conditions for SF to commence. Also, massive SF is intimately related to stellar death. The SKA will be able to study the structure of the ISM at 100 pc resolution out to distances of up to 20 Mpc and will quantify the impact the demise of massive stars has on their environment. Importantly, the SKA will probe the transition region between ISM and IGM, linking star formation and stellar death in the disks of galaxies to faint HI structures further afield, such as “anomalous gas” and (Compact) High Velocity Clouds. Lastly, the superb sensitivity of the SKA will result in some hundred background sources per square degree against which HI absorption lines can be searched for, probing not only the relative importance of the different phases of the gas in galaxies but also the low density gas in the outskirts and between galaxies.  相似文献   

5.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

6.
Observations are presented of the isolated dwarf irregular galaxy And IV made with the Hubble Space Telescope Advanced Camera for Surveys and the Giant Metrewave Radio Telescope in the 21 cm HI line. We determine the galaxy distance of 7.17 ± 0.31 Mpc using the Tip of Red Giant Branch method. The galaxy has a total blue absolute magnitude of –12.81 mag, linear Holmberg diameter of 1.88 kpc, and an HI ‐disk extending to 8.4 times the optical Holmberg radius. The HI massto‐blue luminosity ratio for And IV amounts 12.9 M/L. From the GMRT data we derive the rotation curve for the HI and fit it with different mass models. We find that the data are significantly better fit with an iso‐thermal dark matter halo, than by an NFW halo. We also find that MOND rotation curve provides a very poor fit to the data. The fact that the isothermal dark matter halo provides the best fit to the data supports models in which star formation feedback results in the formation of a dark matter core in dwarf galaxies. The total mass‐to‐blue luminosity ratio of 162 M/L makes And IV among the darkest dIrr galaxies known. However, its baryonic‐to‐dark mass ratio (Mgas + M *)/MT = 0.11 is close to the average cosmic baryon fraction of 0.15. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
An interesting probe of the nature of dark energy is the measure of its sound speed, c s. We review the significance for constraining sound speed models of dark energy using large neutral hydrogen (H  i ) surveys with the square kilometre array (SKA). Our analysis considers the effect on the sound speed measurement that arises from the covariance of c s with the dark energy density, Ωde, and a time-varying equation of state,   w ( a ) = w 0+ (1 − a ) w a   . We find that the approximate degeneracy between dark energy parameters that arises in power spectrum observations is lifted through redshift tomography of the H  i -galaxy angular power spectrum, resulting in sound speed constraints that are not severely degraded. The cross-correlation of the galaxy and the integrated Sachs Wolfe (ISW) effect spectra contributes approximately 10 per cent of the information that is needed to distinguish variations in the dark energy parameters, and most of the discriminating signal comes from the galaxy auto-correlation spectrum. We also find that the sound speed constraints are weakly sensitive to the H  i bias model. These constraints do not improve substantially for a significantly deeper H  i survey since most of the clustering sensitivity to sound speed variations arises from   z ≲ 1.5  . A detection of models with sound speeds close to zero,   c s≲ 0.01,  is possible for dark energy models with   w ≳−0.9  .  相似文献   

8.
Distribution of cold gas in the post-reionization era provides an important link between distribution of galaxies and the process of star formation. Redshifted 21-cm radiation from the hyperfine transition of neutral hydrogen allows us to probe the neutral component of cold gas, most of which is to be found in the interstellar medium of galaxies. Existing and upcoming radio telescopes can probe the large scale distribution of neutral hydrogen via HI intensity mapping. In this paper, we use an estimate of the HI power spectrum derived using an ansatz to compute the expected signal from the large scale HI distribution at z~3. We find that the scale dependence of bias at small scales makes a significant difference to the expected signal even at large angular scales. We compare the predicted signal strength with the sensitivity of radio telescopes that can observe such radiation and calculate the observation time required for detecting neutral hydrogen at these redshifts. We find that OWFA (Ooty Wide Field Array) offers the best possibility to detect neutral hydrogen at z~3 before the SKA (Square Kilometer Array) becomes operational. We find that the OWFA should be able to make a 3 σ or a more significant detection in 2000 hours of observations at several angular scales. Calculations done using the Fisher matrix approach indicate that a 5σ detection of the binned HI power spectrum via measurement of the amplitude of the HI power spectrum is possible in 1000 h (Sarkar et al. 2017).  相似文献   

9.
Magnetic fields have been observed in galaxy clusters with strengths of the order of  ~ μG. The non-thermal pressure exerted by magnetic fields also contributes to the total pressure in galaxy clusters and can in turn affect the estimates of the gas mass fraction, fgas. In this paper, we have considered a central magnetic field strength of 5μG, motivated by observations and simulations of galaxy clusters. The profile of the magnetic field has also been taken from the results obtained from simulations and observations. The role of magnetic field has been taken into account in inferring the gas density distribution through the hydrostatic equilibrium condition (HSE) by including the magnetic pressure. We have found that the resultant gas mass fraction is smaller with magnetic field as compared to that without magnetic field. However, this decrease is dependent on the strength and the profile of the magnetic field. We have also determined the total mass using the NFW profile to check for the dependency of fgas estimates on total mass estimators. From our analysis, we conclude that for the magnetic field strength that galaxy clusters seem to possess, the non-thermal pressure from magnetic fields has an impact of  ≈ 1 % on the gas mass fraction of galaxy clusters. However, with upcoming facilities like Square Kilometre Array (SKA), it can be further expected to improve with more precise observations of the magnetic field strength and profile in galaxy clusters, particularly in the interior region.  相似文献   

10.
In this paper, we investigate how the Square Kilometre Array (SKA) can aid in determining the evolutionary history of active galactic nuclei (AGN) from redshifts z = 0 → 6. Given the vast collecting area of the SKA, it will be sensitive to both ‘radio-loud’ AGN and the much more abundant ‘radio-quiet’ AGN, namely the radio-quiet quasars and their ‘Type-II’ counterparts, out to the highest redshifts. Not only will the SKA detect these sources but it will also often be able to measure their redshifts via the Hydrogen 21-cm line in emission and/or absorption. We construct a complete radio luminosity function (RLF) for AGN, combining the most recent determinations for powerful radio sources with an estimate of the RLF for radio-quiet objects using the hard X-ray luminosity function of [ApJ 598 (2003) 886], including both Type-I and Type-II AGN. We use this complete RLF to determine the optimal design of the SKA for investigating the accretion history of the Universe for which it is likely to be a uniquely powerful instrument.  相似文献   

11.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

12.
High precision estimation of the equation of state of dark energy depends on constraints external to analyses of Cosmic Microwave Background fluctuations. A geometric estimation of the local expansion rate, H0, would provide the most direct and robust constraint. Traditional techniques to estimate H0 have depended on observations of standard candles for which systematic effects can be 10% or more. Observations of water maser sources in the accretion disks that feed the central engines of active galaxies enable simplified, robust, and largely geometric analyses. Many thousand maser sources will be discovered in studies with the SKA, owing to its great sensitivity. Spectroscopic monitoring and interferometric mapping – with intercontinental baselines – will allow estimation of H0 to 1% and possibly better.  相似文献   

13.
The λ21-cm line is an excellent tracer of the neutral interstellar medium (ISM). Atomic hydrogen (HI) is found in a variety of environments, from dense clouds to the diffuse galactic halo, and its filling factor is often high, so structures with sizes over a wide range of scales can be mapped with this line. Galactic HI surveys show small scale structure that is consistent with a spectrum of interstellar turbulence similar to what is measured in the ionized component of the ISM. But our sampling of the spectrum of this turbulence is limited to a few size ranges, based on the sensitivities of existing telescopes for emission and absorption studies. The Square Kilometer Array (SKA) will provide the sensitivity and resolution to give continuous coverage of the turbulence spectrum from hundreds of parsecs to a few tens of Astronomical Units. By showing us the full spectrum of interstellar turbulence in the neutral medium, the physical processes driving hydrodynamic and magneto-hydrodynamic instabilities will be illuminated. Ultimately the turbulence governs the passage of the gas from the warm phases of the medium to the cold phases where gravitational collapse can initiate star formation. The SKA is needed to fill in this missing link in the cycle of star formation and chemical enrichment that drives the evolution of galaxies. In the Milky Way halo, SKA mapping of HI high velocity clouds will trace the structure and motion of both the warm phase gas and the hot medium. The interaction between these two phases of halo gas is a great unsolved problem in Galactic astrophysics.  相似文献   

14.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

15.
Only in recent years has the realization emerged that galaxies do not dominate the universal baryon budget but are merely the brightest pearls of an underlying cosmic web. Although the gas in these inter-galactic filaments is moderately to highly ionized, QSO absorption lines have shown that the surface area increases dramatically in going down to lower HI column densities. The first image of the cosmic web in HI emission has just been made of the Local Group filament connecting M31 and M33. The corresponding HI distribution function is in very good agreement with that of the QSO absorption lines, confirming the 30-fold increase in surface area expected between 1019 and 1017 cm−2. The critical observational challenge is crossing the “HI desert”, the range of log(NHI) from about 19.5 down to 18, over which photo-ionization by the intergalactic radiation field produces an exponential decline in the neutral fraction from essentially unity down to a few percent. Nature is kinder again to the HI observer below log(NHI) = 18, where the neutral fraction decreases only very slowly with log(NHI). With the SKA, we can begin the systematic study of the cosmic web beyond the Local Group. With moderate integration times, the necessary resolution and sensitivity can be achieved out to distances beyond the Virgo cluster. When combined with targeted optical and UV absorption line observations, the total baryonic masses and enrichment histories of the cosmic web will be determined over the complete range of environmental over-densities.  相似文献   

16.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

17.
We investigate the potential of the Square Kilometer Array Telescope (SKA) to constrain the sound speed of dark energy. The Integrated Sachs Wolfe (ISW) effect results in a significant power spectrum signal when Cosmic Microwave Background (CMB) temperature anisotropies are cross-correlated with galaxies detectable with the SKA in H  i . We consider using this measurement, the autocorrelation of H  i galaxies and the CMB temperature power spectrum to derive constraints on the sound speed. We study the contributions to the cross-correlation signal made by galaxies at different redshifts and use redshift tomography to improve the signal-to-noise. We use a  χ2  analysis to estimate the significance of detecting a sound speed different from that expected in quintessence models, finding that there is potential to distinguish very low sound speeds from the quintessence value.  相似文献   

18.
We present Galaxy Ultraviolet Explorer (GALEX) satellite observations of the SB0 galaxy NGC 4262 where we detect an extended, outer ring studded with UV-bright knots surrounding the galaxy body. Such a structure, not visible at optical wavelengths, is coupled with a ring of atomic (HI) gas. We will show that both star-forming and HI rings surrounding this SB0 galaxy share the same radial distance from the galaxy center and spatial orientation. We also model the kinematics of the ring(s) and of the galaxy body. Their kinematics is not coupled with that of the galaxy stars. We suggest that NGC 4262 has undergone a major gas stripping event in the past that was the origin of the present “necklace” of UV-bright knots.  相似文献   

19.
We will present first results of ESO-VLT AO-assisted integral-field spectroscopy of a sample of X-ray bright AGN with redshifts of 0.04 < z < 1. We constructed this sample by cross-correlating the SDSS and ROSAT surveys and utilizing typical AO constraints. This sample allows for a detailed study of the NIR properties of the nuclear and host environments with high spectral resolution on the 100 pc scale. These objects can then be compared directly to the local (z < 0.01) galaxy populations (observed without AO) at the same linear scale. As a current example, we will present observations of the z = 0.034 Seyfert 1.8 galaxy Mrk 609 with the new AO-assisted integral-field spectrometer SINFONI at the VLT. The successful observations show, that in the future – while having observed more objects – we will be able to determine the presence, frequency and importance of nuclear bars and/or circum-nuclear star forming rings in these objects and address the question of how these X-ray luminous AGN and their hosts are linked to optically/UV-bright QSOs, low-z QSOs/radio galaxies, or ULIRGs.  相似文献   

20.
Published data on gas systems of different velocities in the galaxy NGC 1275 are examined. One of the systems is associated with NGC 1275 (low-velocity system — LV); the other is approaching it at a velocity of 3000 km/sec (high-velocity system — HV). Many of the collected results obtained from spectra and from direct images in the ultraviolet, optical, red, and infrared indicate interaction of these systems. The interaction is exhibited in the same shape and spatial distribution of the gas filaments in both systems, in the elongation of some of them toward the nucleus of the galaxy, and in the increase in brightness of the HV gas near some of the clusters of young stars of the LV system. Gas of the HV system is observed at a distance of O.5 (170 pc) from the nucleus of the galaxy, while intermediate-velocity gas (IV — 600–1520 km/sec relative to the velocity of NGC 1275) is detected at distances less than 7 (2.5 kpc). We presume that the rare cases of the detection of IV gas are related to the use of Ha observations primarily: at the velocities of 600–900 km/sec, the Ha line of the IV gas blends with the [NII] 6584Å line of the LV gas.Translated fromAstrofizika, Vol. 39, No. 4, pp. 567–584, November, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号