首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

2.
The famous three-body problem can be traced back to Newton in 1687, but quite few families of periodic orbits were found in 300 years thereafter. In this paper, we propose an effective approach and roadmap to numerically gain planar periodic orbits of three-body systems with arbitrary masses by means of machine learning based on an artificial neural network (ANN) model. Given any a known periodic orbit as a starting point, this approach can provide more and more periodic orbits (of the same family name) with variable masses, while the mass domain having periodic orbits becomes larger and larger, and the ANN model becomes wiser and wiser. Finally we have an ANN model trained by means of all obtained periodic orbits of the same family, which provides a convenient way to give accurate enough predictions of periodic orbits with arbitrary masses for physicists and astronomers. It suggests that the high-performance computer and artificial intelligence (including machine learning) should be the key to gain periodic orbits of the famous three-body problem.  相似文献   

3.
This paper investigates new families of displaced, highly non-Keplerian orbits in the two-body problem and artificial equilibria in the circular restricted three-body problem. The families of orbits presented extend prior work by using periodic impulses to generate displaced orbits rather than continuous thrust. The new displaced orbits comprise a sequence of individual Keplerian arcs whose intersection is continuous in position, with discontinuities in velocity removed using impulses. For frequent impulses the new families of orbits approximate continuous thrust non-Keplerian orbits found in previous studies. To generate approximations to artificial equilibria in the circular restricted three-body problem, periodic impulses are used to generate a sequence of connected three-body arcs which begin and terminate at a fixed position in the rotating frame of reference. Again, these families of orbits reduce to the families of artificial equilibria found using continuous thrust.  相似文献   

4.
The Sitnikov configuration is a special case of the restricted three-body problem where the two primaries are of equal masses and the third body of a negligible mass moves along a straight line perpendicular to the orbital plane of the primaries and passes through their center of mass. It may serve as a toy model in dynamical astronomy, and can be used to study the three-dimensional orbits in more applicable cases of the classical three-body problem. The present paper concerns the straight-line oscillations of the Sitnikov family of the photogravitational circular restricted three-body problem as well as the associated families of three-dimensional periodic orbits. From the stability analysis of the Sitnikov family and by using appropriate correctors we have computed accurately 49 critical orbits at which families of 3D periodic orbits of the same period bifurcate. All these families have been computed in both cases of equal and non-equal primaries, and consist entirely of unstable orbits. They all terminate with coplanar periodic orbits. We have also found 35 critical orbits at which period doubling bifurcations occur. Several families of 3D periodic orbits bifurcating at these critical Sitnikov orbits have also been given. These families contain stable parts and close upon themselves containing no coplanar orbits.  相似文献   

5.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

6.
The basic families of three-dimensional periodic orbits of the general three-body problem are determined numerically in order to obtain a global view of the simpler patterns of periodic three-body motion in three dimensions. The stability of the orbits is also computed. It is found that most of the orbits are unstable but stability intervals do exist for some of the families.  相似文献   

7.
Periodic Orbits of a Collinear Restricted Three-Body Problem   总被引:6,自引:0,他引:6  
In this paper we study symmetric periodic orbits of a collinear restricted three-body problem, when the middle mass is the largest one. These symmetric periodic orbits are obtained from analytic continuation of symmetric periodic orbits of two collinear two-body problems.  相似文献   

8.
We present the biparametric family I of symmetric periodic orbits of the three-dimensional general three-body problem, found by numerical continuation of the vertical critical orbit I of the circular restricted three-body problem. The periodic orbits refer to a suitably chosen rotating frame of reference.  相似文献   

9.
We present families of periodic orbits of the restricted three-body problem terminating with homoclinic orbits asymptotic to equilibrium points or to periodic orbits, as opposed to heteroclinic orbits presented in part I. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A systematic search for periodic orbits doubly-asymptotic to the collinear equilibrium points of the restricted three-body problem is carried out and many such orbits are found, each of them existing for a specific value of the mass parameter. These may be useful as reference orbits and seem to be special limit orbits representing period discontinuities in the evolution of the families of periodic orbits.  相似文献   

11.
In the case of the restricted three-body problem with small mass parameter a family of plane symmetric periodic orbits of the direct type around the large primary is found to have branches of three-dimensional periodic orbits. One such branch has been established consisting of stable orbits for small deviations from the plane.  相似文献   

12.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

13.
A review is presented of periodic orbits of the planetary type in the general three-body problem and fourbody problem and the restricted circular and elliptic tnreebody problem. These correspond to planetary systems with one Sun and two or three planets (or a planet and its satellites), the motion of asteoids and also planetary systems with two Suns. The factors which affect the stability of the above configurations are studied in connection with resonance or additional perturbations. Finally, the correspondence of the periodic orbits in the restricted three-body problem with the fixed points obtained by the method of averaging or the method of surface of section is indicated.  相似文献   

14.
The three-dimensional general three-body problem is formulated suitably for the numerical determination of periodic orbits either directly or by continuation from the three-dimensional periodic orbits of the restricted problem. The symmetry properties of the equations of motion are established and the algorithms for the numerical determination of families of periodic orbits are outlined. A normalization scheme based on the concept of the invariable plane is introduced to simplify the process. All three types of symmetric orbit, as well as the general type of asymmetric orrbit, are considered. Many threedimmensional p periodic orbits are given.  相似文献   

15.
We prove the following weakened version of Poincaré's conjecture on the density of periodic orbits of the restricted three-body problem: The measure of Lebesgue of the set of bounded orbits which are not contained in the closure of the set of periodic orbits goes to zero when the mass parameter does.  相似文献   

16.
This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.  相似文献   

17.
We study symmetric relative periodic orbits in the isosceles three-body problem using theoretical and numerical approaches. We first prove that another family of symmetric relative periodic orbits is born from the circular Euler solution besides the elliptic Euler solutions. Previous studies also showed that there exist infinitely many families of symmetric relative periodic orbits which are born from heteroclinic connections between triple collisions as well as planar periodic orbits with binary collisions. We carry out numerical continuation analyses of symmetric relative periodic orbits, and observe abundant families of symmetric relative periodic orbits bifurcating from the two families born from the circular Euler solution. As the angular momentum tends to zero, many of the numerically observed families converge to heteroclinic connections between triple collisions or planar periodic orbits with binary collisions described in the previous results, while some of them converge to “previously unknown” periodic orbits in the planar problem.  相似文献   

18.
In the general three-body problem, in a rotating frame of reference, a symmetric periodic solution with a binary collision is determined by the abscissa of one body and the energy of the system. For different values of the masses of the three bodies, the symmetric periodic collision orbits form a two-parametric family. In the case of equal masses of the two bodies and small mass of the third body, we found several symmetric periodic collision orbits similar to the corresponding orbits in the restricted three-body problem. Starting with one symmetric periodic collision orbit we obtained two families of such orbits. Also starting with one collision orbit in the Sun-Jupiter-Saturn system we obtained, for a constant value of the mass ratio of two bodies, a family of symmetric periodic collision orbits.  相似文献   

19.
Applying the method of analytical continuation of periodic orbits, we study quasi-satellite motion in the framework of the three-body problem. In the simplest, yet not trivial model, namely the planar circular restricted problem, it is known that quasi-satellite motion is associated with a family of periodic solutions, called family f, which consists of 1:1 resonant retrograde orbits. In our study, we determine the critical orbits of family f that are continued both in the elliptic and in the spatial models and compute the corresponding families that are generated and consist the backbone of the quasi-satellite regime in the restricted model. Then, we show the continuation of these families in the general three-body problem, we verify and explain previous computations and show the existence of a new family of spatial orbits. The linear stability of periodic orbits is also studied. Stable periodic orbits unravel regimes of regular motion in phase space where 1:1 resonant angles librate. Such regimes, which exist even for high eccentricities and inclinations, may consist dynamical regions where long-lived asteroids or co-orbital exoplanets can be found.  相似文献   

20.
It is proved that the vertical critical orbits of the planar circular restricted three-body problem can be used as starting points for finding periodic orbits of the three-dimensional generalN-body problem. A numerical example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号