首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
云南天文台的太阳Stokes光谱望远镜是一台通过测量磁敏谱线的Stokes参数I,Q,U和V的轮廓来研究太阳磁场精细结构的光谱型矢量磁场测量仪。它利用4个完整的Stokes轮廓所蕴含的丰富信息,完全确定辐射的偏振状态,从而精确地测定太阳黑子区的矢量磁场。文章首先介绍了该望远镜的结构,进而详细地介绍了该望远镜所测量的偏振光谱资料的处理方法。  相似文献   

2.
Taking into account magneto-optical effects, we have obtained numerical solutions of the transfer equations for the Stokes parameters, calculated the linearly polarized intensity (U) and constructed its monochromatic images of unipolar sunspots. By comparison with the observational material of the vector magnetograph of the Marshall Space Flight Center, Huntsville (Alabama), we have found that the model of radial magnetic fields may give rise to U monochromatic images close to those observed. The same conclusion has been obtained previously by Landi Degl'Innocenti (1979), although his analysis was performed with the Milne-Eddington approximation instead of a detailed sunspot model. Moreover, we have shown that the model of spiral magnetic fields leads to results in contrast with observations.  相似文献   

3.
J. Staude 《Solar physics》1970,15(1):102-112
The strong temperature dependence of the line Fei 5250.2 has been studied by calculating line contours and magnetographic calibration curves for different spot models and the BCA. Line contours calculated for arbitrary depth dependence of the magnetic field vector show depolarization effects within the Zeeman components for transversal fields with variable direction and changes of the observed plane of polarization if anomalous dispersion is taken into account.The observed anomalous splitting of the -component may be interpreted best by suggesting discrete inhomogeneities of the magnetic field within sunspots.  相似文献   

4.
We make a quantitative comparison between spectral vs filter measurement and analysis techniques for extraction of solar vector magnetic fields from polarimetric data using as a basis the accurately calibrated, high angular resolution Stokes profile data from the Advanced Stokes Polarimeter. It is shown that filter-based measurements deliver qualitative images of the field alignment for sunspots that are visually similar to images derived from the more detailed analysis of the Stokes profiles. However, quantitative comparison with least-squares fits to the full Stokes profiles show that both the strength of the field predicted by the filter-based analysis and its orientation contain substantial errors. These errors are largest for plage regions outside of sunspots, where the field strengths are inferred to be only a fraction of their true values, and errors in the orientation of 40–50° are common. Within sunspots, errors of 20° are commonplace. The greatest source of these errors is the inability of the filter-based measurements to account for the small fill fraction of magnetic fields or, equivalently, scattered light in the instrument, which reduce the degree of polarization. The uncertainties of the full profile fitting methods are also discussed, along with the errors introduced by coarser wavelength sampling of the observed Stokes profiles. The least-squares fitting procedure operates best when the profiles are sampled at least as frequently as one Doppler width of the line.On leave from the Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
Brown  A.  López Ariste  A.  Casini  R. 《Solar physics》2003,215(2):295-305
In this paper we present our results of the application of the magnetograph formula to synthetic Stokes V profiles in prominences. We investigate both the Zeeman and atomic-polarization signatures within the V profile and question why previous attempts to determine magnetic field strength, on average, were correct, even if the magnetograph formula does not apply in general.The National Center for Atmospheric Research is sponsored by the National Science FoundationSponsored by the Summer Undergraduate Program of the High Altitude Observatory  相似文献   

6.
When unipolar sunspots are observed in the linearly polarized radiation represented by the Stokes parametersQ andU of magneto-sensitive spectral lines, their images display a complicated and interesting configuration. This is caused by the magneto-optical effect and also is connected with the 3-D structure of spot magnetic fields. In the process of numerical simulation it is possible to infer the regularity of variation of the angle of inclination of magnetic lines of force with distance from the spot center.  相似文献   

7.
本文在考虑磁光效应条件下,根据对斯托克斯参数转移方程组求得的数值解,计算了单极太阳黑子的线偏振讯号的单色像,并与美国马歇尔空间飞行中心的观测资料进行了对比,结果表明,径向黑子磁场模型给出与观测相似的单色像,而旋涡形模型导致与观测有显著差异的图像。因此可以认为径向模型更接近于实际情况。  相似文献   

8.
Sunspots are known to have large, low-lying magnetic canopies, i.e. horizontal magnetic fields overlying a field-free medium, that cover substantial fractions of active region plage. In this paper we consider the influence of such canopies on the inclination of plage magnetic fields. We find that for observations in spectral lines like 5250.2Å the neglect of a sunspot canopy when determining magnetic inclination angles of plage fields can introduce errors exceeding 5–10°. This is particularly true if the observations do not have high spatial resolution. Thus this effect may explain some of the measurements of substantially inclined fields in solar plages. Furthermore we find that the Fe I 15648 Å line is far superior in giving correct flux-tube inclinations in the presence of a sunspot magnetic canopy. Finally, the inversion of full Stokes profiles is shown to produce more reliable results than results obtained by considering only ratios of individual Stokes profile parameters.  相似文献   

9.
本文给出了一个在观测中辨别光球横向磁场指向的一个判据。并证明了光球横向电流与横向磁场的指向无关,因而完全可以由向量磁象仪测定。  相似文献   

10.
Using observational data on 14 sunspots from the Sayan Observatory vector magnetograph, a study was made of the relationship between the sunspot magnetic field and the Evershed motions. It is shown that the central area of the solar disk is dominated by an anti-correlation of the longitudinal magnetic field B and the line-of-sight velocity V when a maximum of V corresponds to the neutral line of the longitudinal field. Near the limb there usually is a coincidence of the field and velocity neutral lines. There is evidence for the possible asymmetric character of the effect with respect to the central meridian.  相似文献   

11.
Braun  D.C.  Lindsey  C. 《Solar physics》2000,192(1-2):307-319
Phase-correlation statistics comparing acoustic radiation coming out of a particular point on the solar photosphere with acoustic radiation going into it show considerably reduced sound travel times through the subphotospheres of active regions. We have now applied techniques in phase-sensitive seismic holography to data from the Solar Oscillations Investigation – Michelson Doppler Imager (SOI-MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft to obtain high resolution phase-correlation maps of a large, complex active region and the `acoustic moat' which surrounds it. We report the following new results: First, the reduced sound travel-time perturbations in sunspots, acoustic moats, and isolated plages increase approximately in proportion to the logarithm of the surface magnetic flux density, for flux densities above 10 G. This is consistent with an interpretation of the travel-time anomalies, observed with holographic and other local-helioseismic procedures, as caused by acoustic Wilson-like depressions in photospheres of magnetic regions. Second, we find that, compared with isolated plages, the acoustic moats have an additional sound travel-time reduction on the order of 3–5 s which may be explained by a thermal excess due to the blockage of convective transport by the sunspot photosphere. Third, the combined effect of the Wilson depression in plages, acoustic moats, and sunspots may explain the observed variation of global p-mode frequencies with the solar cycle. Fourth, we find that active regions, including sunspots, acoustic moats, and plages, significantly reflect p modes above the acoustic cut-off frequency, where the surface of the quiet Sun acts as a nearly perfect absorber of incident acoustic radiation.  相似文献   

12.
Polarized intensity and polarization angles are calculated from Stokes parameters Q and U in a nonlinear way. The statistical properties of polarized emission hold information about the structure of magnetic fields in a large range of scales, but the contributions of different stages of data processing to the statistical properties should first be understood. We use 1.4 GHz polarization data from the Effelsberg 100‐m telescope of emission in the Galactic plane, near the plane and far out of the plane. We analyze the probability distribution function and the wavelet spectrum of the original maps in Stokes parameters Q, U and corresponding PI. Then we apply absolute calibration (i.e. adding the large‐scale emission to the maps in Q and U), subtraction of polarized sources and subtraction of the positive bias in PI due to noise (“denoising”). We show how each procedure affects the statistical properties of the data. We find a complex behavior of the statistical properties for the different regions analyzed which depends largely on the intensity level of polarized emission. Absolute calibration changes the morphology of the polarized structures. The statistical properties change in a complex way: Compact sources in the field flatten the wavelet spectrum over a substantial range. Adding large‐scale emission does not change the spectral slopes in Q and U at small scales, but changes the PI spectrum in a complex way. “Denoising” significantly changes the p.d.f. of PI and raises the entire spectrum. The final spectra are flat in the Galactic plane due to magnetic structures in the ISM, but steeper at high Galactic latitude and in the anticenter. For a reliable study of the statistical properties of magnetic fields and turbulence in the ISM based on radio polarization observations, absolute calibration and source subtraction are required. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We compare completely independent vector magnetic field measurements from two very different polarimetric instruments. The Marshall Space Flight Center's imaging vector magnetograph is based on a birefringent filter, routinely measuring all four Stokes parameters integrated over the filter bandpass (1/8 Å) which is tunable across the Fei 5250 line in 10 mÅ steps. The Haleakala Stokes Polarimeter of the Mees Solar Observatory (MSO) is based on a spectrometer, routinely measuring all four Stokes parameters of the Fei 6302.5 line simultaneously and then spatially scanning to build up a vector magnetogram. We obtained active region magnetic field data with both the Marshall Space Flight Center (MSFC) and MSO systems on five days during June 1985. After interpolating the MSFC vector fields onto the more coarse spatial grid of MSO we make a point-by-point comparison of the two vector fields for data obtained on two of these days (June 8 and 9). From this comparison we conclude: (1) the spatially-averaged line-of-sight components agree quite well; (2) although the MSO spatial grid is coarser, the quality of the MSO image is better than that of the MSFC data because of better seeing conditions; (3) the agreement between the transverse magnitudes is affected by the poor image quality of the MSFC data; and (4) if the effects of Faraday rotation caused by including line-center linear polarization in the method of analysis are taken into account, the azimuths show good agreement within the scatter in the data caused by the averaging process.National Research Council Resident Research Associate.  相似文献   

14.
We discuss some properties of the Sun-as-a-star magnetic field (SSMF) from measurements of the Stokes I and V profiles observed in several spectral lines simultaneously at the Sayan Observatory during 1999–2001. The data are analyzed both in terms of the Stokesmeter and magnetographic measuring techniques. Using, together with the SSMF observations, quasi-simultaneous measurements of V-profile distributions across the solar surface with an angular resolution of 100 arc sec we have shown that the SSMF signal is determined largely by the central area of the disk within 0.5 solar radius. We have explored the correlation and regression relations in different combinations of four Fraunhofer lines near the line Fei 525.021 nm and concluded that fine-structure elements with kilogauss strengths are main sources of the SSMF signal. We have obtained statistical estimates of asymmetry parameters and relative shifts of the Stokes V-profiles, which indicate the presence of dynamic processes in the magnetic elements. The relation between the Sayan and Stanford SSMF measurements is analyzed.  相似文献   

15.
Ramesh  K.B.  Nagabhushana  B.S.  Varghese  B.A. 《Solar physics》1999,188(1):99-113
Analysis of the photospheric and chromospheric activity at the sites of enhanced 5303 Å coronal intensity revealed some important aspects of their association. We have examined the daily maps of 5303 Å coronal line intensity of Lomnický tít for the low sunspot activity years 1985 and 1986 in association with the cotemporal daily maps of sunspots, plages and Stanford magnetograms and identified strong field gradients at the sites of enhanced intensity regions. We found that the peak intensity does not depend on the strength of the underlying magnetic field though the coronal intensity-enhanced feature is almost sure to occur at the locations of sunspots with strong magnetic fields and at the locations of plages having larger areas.  相似文献   

16.
Kupke  Renate  Labonte  B.J.  Mickey  D.L. 《Solar physics》2000,191(1):97-128
Time series of 2-dimensional spectro-polarmetric data were obtained with the intent of studying the temporal behavior of velocity, magnetic flux, and characteristics of the Stokes V profile in a small region of a larger sunspot. Full Stokes profiles in I, Q, U, and V were obtained. Velocity oscillations were found at frequencies of 3.3 mHz in each of the profiles. Acoustic power maps indicate that locations of highest power correspond to areas in which the polarization signal was greatest, therefore no conclusion about the type of wave mode participating in the oscillations can be made. Velocity amplitudes were I: 71 m s–1, Q: 47 m s–1, U: 65 m s–1 and V: 86 m s–1. Oscillatory behavior was also detected in longitudinal field strength, with an r.m.s. amplitude of 22 G, at 2.6 and 3.3 mHz. The power was localized at the umbral/penumbral boundary. A phase analysis indicates a –130° phase difference with Stokes V velocity oscillations at 3.3 mHz and a 75° difference at 2.6 mHz. Results are consistent with magnetic field lines swaying in response to a p-mode driver. No oscillatory behavior was seen in Stokes V asymmetry or amplitude splitting.  相似文献   

17.
Significant discrepancies are often observed among the values of the mean magnetic field (MMF) of the Sun as a star observed by various instruments using various spectral lines. This is conventionally attributed to the measurement errors and “saturation” of a solar magnetograph in fine-structure photospheric elements with a strong magnetic field. Measurements of the longitudinal MMF performed in 1968–2006 at six observatories are compared in this paper. It is shown that the degree of discrepancy (slopes b of linear regression lines) varies significantly over the phase of the 11-year cycle. This gives rise to a paradox: the magnetograph calibration is affected by the state of the Sun itself. The proposed explanation is based on quantum properties of light, namely, nonlocality and “coupling” of photons whose polarization at the telescope-spectrograph output is determined by spacious parts of the solar disk. In this case, the degree of coupling, or “identity,” of photons depends on the field distribution in the photosphere and the instrument design (as Bohr said, “the instrument inevitably affects the result”). The “puzzling” values of slope b are readily explained by the dependence of the coupling on the solar-cycle phase. The very statistical nature of light makes discrepancies unavoidable and requires the simple averaging of data to obtain the best approximation of the actual MMF. A 39-year time series of the MMF absolute value is presented, which is indicative of significant variations in the magnitude of the solar magnetic field with a cycle period of 10.5(7) yr.  相似文献   

18.
Analysis of magnetograph recordings made simultaneously in different spectral lines have shown that the quiet-region network and active-region plages with average field strengths less than about 100 G are made up by the same type of elementary structures, each having the same physical properties. Magnetograph data are used together with continuum, line profile, and EUV data to derive a model of these subarcsec, spatially unresolved elementary structures. The field strength at the center of each basic element is about 2 kG. The temperature enhancement starts at a height of about 180 km (above the level 0 = 1 in HSRA), and increases rapidly with height. The brightness structures are coarser than the magnetic-field structures.The magnetic field cannot be contained by either gas pressure or dynamic pressure. The magnetic pressure must be balanced by the constricting force of strong electric currents along the magnetic filaments (pinch effect). A mechanism is proposed for the amplification of the field, involving vortex motions around the downdrafts in the network and plages. Efficient heating by hydromagnetic waves builds up an excess gas pressure inside the twisted fluxropes. The excess pressure is released by the ejection of spicules, which have to move out along the helically shaped field lines and thereby will acquire a spinning motion.The continuum emission in the fluxropes, which are located in the intergranular lanes, washes out the contrast between cell interiors and cell boundaries and creates an abnormal granulation pattern. When more and more magnetic flux is brought into a given area, the interaction between the fluxropes and the granulation starts to change the physical structure of the fluxropes. This begins at an average field B obs 100 G, with a gradual transition to pores and sunspots as b obs is increased.  相似文献   

19.
We considered some selected published stellar catalogues with BV and V values for the open cluster NGC 188 and estimated the errors from data comparisons. The results are used to homogenize the data by averaging with weights inversely proportional to the errors squared. A recent calibration by Casagrande et al. (2010) of BV versus effective temperatures for F, G, and K dwarfs and subgiants is used to produce the homogenized effective temperatures for the cluster stars. A homogenized Hertzsprung‐Russell diagram (relationship between the effective temperatures and the absolute magnitudes) is presented and analysed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
W. Scholiers  E. Wiehr 《Solar physics》1985,99(1-2):349-363
A new apparatus is described which measures the Stokes profiles by means of a two-dimensional 100 × 100 detector array. On-line data processing allows the immediate visualization of the profiles corresponding to several spectral lines observed simultaneously along one spatial direction on the solar disk. An improved method for the accurate compensation of the telescopic birefringence with a Bowen compensator is realized. Three different methods for the investigation of fluxtube properties are discussed, based on the analysis of V profiles and illustrated by first measurements with the apparatus. Two characteristics of V profiles; excess polarization and zero crossing wavelength of the V profile show strong spatial variations in plages and network indicating different dynamical conditions for individual fluxtubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号