首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We present chemical abundance measurements from medium-resolution observations of eight subdamped Lyα (sub-DLA) absorber and two strong Lyman-limit systems at   z ≲ 1.5  observed with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the 6.5-m Magellan II Clay telescope. These observations were taken as part of an ongoing project to determine abundances in   z abs≲ 1.5  quasar absorption line systems focusing on sub-DLA systems. These observations increase the sample of Zn measurements in   z abs≲ 1.5  sub-DLAs by ∼50 per cent. Lines of Mg  i , Mg  ii , Al  ii , Al  iii , Ca  ii , Mn  ii , Fe  ii and Zn  ii were detected and column densities were determined. Zn  ii , a relatively undepleted element and tracer of the gas-phase metallicity is detected in two of these systems, with  [Zn/H]=−0.05 ± 0.12  and  [Zn/H] > +0.86  . The latter one is however a weak system with   N H  I < 18.8  , and therefore may need significant ionization corrections to the abundances. Fe  ii lines were detected in all systems, with an average Fe abundance of  〈[Fe/H]〉=−0.68  , higher than typical Fe abundances for DLA systems at these redshifts. This high mean [Fe/H] could be due to less depletion of Fe on to dust grains, or to higher abundances in these systems. We also discuss the relative abundances in these absorbers. The systems with high metallicity show high ratios of [Mn/Fe] and [Zn/Fe], as seen previously in another sub-DLA. These higher values of [Mn/Fe] could be a result of heavy depletion of Fe on to grains, unmixed gas, or an intrinsically non-solar abundance pattern. Based on cloudy modelling, we do not expect ionization effects to cause this phenomenon.  相似文献   

2.
We investigate the practice of assigning high spin temperatures to damped Lyman α absorption systems (DLAs) not detected in H  i 21-cm absorption. In particular, Kanekar & Chengalur have attributed the mix of 21-cm detections and non-detections in low-redshift  ( z abs≤ 2.04) DLAs  to a mix of spin temperatures, while the non-detections at high redshift were attributed to high spin temperatures. Below   z abs= 0.9  , where some of the DLA host galaxy morphologies are known, we find that 21-cm absorption is normally detected towards large radio sources when the absorber is known to be associated with a large intermediate (spiral) galaxy. Furthermore, at these redshifts, only one of the six 21-cm non-detections has an optical identification and these DLAs tend to lie along the sight-lines to the largest background radio continuum sources. For these and many of the high-redshift DLAs occulting large radio continua, we therefore expect covering factors of less than the assumed/estimated value of unity. This would have the effect of introducing a range of spin temperatures considerably narrower than the current range of  Δ T s≳ 9000 K  , while still supporting the hypothesis that the high-redshift DLA sample comprises a larger proportion of compact galaxies than the low-redshift sample.  相似文献   

3.
We have used echelle spectra of resolving power 35 000 to derive chemical abundances and the 12C/13C ratio in the 1.9-d carbon Cepheid RT TrA and the Cepheid U TrA, employed as a comparison star. We confirm that RT TrA is very metal-rich with [Fe/H]=+0.4. In addition, C and N are substantially in excess, and a small deficiency in O is present. We interpret these anomalies as resulting from the appearance on the stellar surface of material enriched in 12C by the 3- α process, followed by CNO cycling to convert 12C to 13C and 14N. In addition, some 16O has been processed to 14N. The partial processing of 16O to 14N indicates that substantial 17O may be present. Proton capture seems to have enhanced 23Na from the Ne isotopes.  相似文献   

4.
We present a sample of 33 damped Lyman α systems (DLAs) discovered in the Sloan Digital Sky Survey (SDSS) whose absorption redshifts ( z abs) are within 6000 km s−1 of the quasi-stellar object's (QSO) systemic redshift ( z sys). Our sample is based on  731 2.5 < z sys < 4.5  non-broad absorption line (non-BAL) QSOs from Data Release 3 (DR3) of the SDSS. We estimate that our search is ≈100 per cent complete for absorbers with N (H  i )  ≥ 2 × 1020 cm−2  . The derived number density of DLAs per unit redshift, n ( z ), within  Δ v < 6000 km s−1  is higher (3.5σ significance) by almost a factor of 2 than that of intervening absorbers observed in the SDSS DR3, i.e. there is evidence for an overdensity of galaxies near the QSOs. This provides a physical motivation for excluding DLAs at small velocity separations in surveys of intervening 'field' DLAs. In addition, we find that the overdensity of proximate DLAs is independent of the radio-loudness of the QSO, consistent with the environments of radio-loud and radio-quiet QSOs being similar.  相似文献   

5.
We describe initial results of a search for redshifted molecular absorption towards four millimetre-loud, optically faint quasars. A wide frequency bandwidth of up to 23 GHz per quasar was scanned using the Swedish–ESO Submillimetre Telescope at La Silla. Using a search list of commonly detected molecules, we obtained nearly complete redshift coverage up to   z abs= 5  . The sensitivity of our data is adequate to have revealed absorption systems with characteristics similar to those seen in the four known redshifted millimetre-band absorption systems, but none were found. Our frequency-scan technique nevertheless demonstrates the value of wide-band correlator instruments for searches such as these. We suggest that a somewhat larger sample of similar observations should lead to the discovery of new millimetre-band absorption systems.  相似文献   

6.
The study of elemental abundances in damped Lyman alpha systems (DLAs) at high redshift represents one of our best opportunities to probe galaxy formation and chemical evolution at early times. By coupling measurements made in high- z DLAs with our knowledge of abundances determined locally and with nucleosynthetic models, we can start to piece together the star formation histories of these galaxies. Here, we discuss the clues to galactic chemical evolution that may be gleaned from studying the abundance of Co in DLAs. We present high resolution echelle spectra of two quasi-stellar objects (QSOs), Q2206−199 and Q1223+17, both already known to exhibit intervening damped systems. These observations have resulted in the first ever detection of Co at high redshift, associated with the z abs=1.92 DLA in the sightline towards Q2206−199. We find that the abundance of Co is approximately 1/4 solar and that there is a clear overabundance relative to iron, [Co/Fe]=+0.31±0.05 . From the abundance of Zn, we determine that this is a relatively metal-rich DLA, with a metallicity of approximately 1/3 Z . Therefore, this first detection of Co is similar to the marked overabundance relative to Fe seen in Galactic bulge and thick-disc stars.  相似文献   

7.
The behaviour of the  Δν= 2 CO  bands around 2.3 μm was examined by comparing observed and synthetic spectra in stars in globular clusters of different metallicity. Changes in the 12C/13C isotopic ratio and the carbon abundances were investigated in stars from 3500–4900 K in the galactic globular clusters M71, M5, M3 and M13, covering the metallicity range from −0.7 to −1.6. We found relatively low carbon abundances that are not affected by the value of oxygen abundance. For most giants, the 12C/13C ratios determined are consistent with the equilibrium value for the CN cycle. This suggests complete mixing on the ascent of the red giant branch, in contrast to the substantially higher values predicted across this range of parameters by the current generation of models. We found some evidence for a larger dispersion of 12C/13C in giants of M71 of metallicity  [μ]=[M/H]=−0.7  in comparison with the giants of M3, M5 and M13, which are more metal deficient. Finally, we show evidence for lower 12C/13C in giants of globular clusters with lower metallicities, as predicted by theory.  相似文献   

8.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

9.
We present high-resolution Utrecht Echelle Spectrograph spectra of the quasar PHL 957, obtained in order to study the foreground damped Lyα (DLA) galaxy at z =2.309. Measurements of absorption lines lead to accurate abundance determinations of Fe, S and N which complement measurements of Zn, Cr and Ni already available for this system. We find [Fe/H]=−2.0±0.1, [S/H]=−1.54±0.06 and [N/H]=−2.76±0.07. The ratio [Fe/Zn]=−0.44 provides evidence that ≈74 per cent of iron and ≈28 per cent of zinc are locked into dust grains with a dust-to-gas ratio of ≈3 per cent of the Galactic one. The total iron content in both gas and dust in the DLA system is [Fe/H]=−1.4. This confirms a rather low metallicity in the galaxy, which is in the early stages of its chemical evolution. The detection of S ii allows us to measure the S ii /Zn ii ratio, which is a unique diagnostic tool for tracing back its chemical history, since it is not affected by the presence of dust. Surprisingly, the resulting relative abundance is [S/Zn]=0.0±0.1, at variance with the overabundance found in the Galactic halo stars with similar metallicity. We emphasize that the [S/Zn] ratio is solar in all the three DLA absorbers with extant data. Upper limits are also found for Mn, Mg, O and P and, once the dust depletion is accounted for, we obtain [Mg/Fe]c<+0.2, [O/Fe]c<+0.4, [Mn/Fe]c<+0.0 and [P/Fe]c<−0.7. The [α/Fe] values do not support Galactic halo-like abundances, implying that the chemical evolution of this young galaxy is not reproducing the evolution of our own Galaxy.  相似文献   

10.
By using UV spectra for the O star HD 93521 taken with the ORFEUS II echelle spectrograph, we determine an 'astrophysical' f value for the S  ii   λ 94.7-nm line: f =0.00498−0.00138+0.00172 , error at 1 σ level. This is almost a factor of 30 smaller than the guessed value found in the Kurucz data base (  f =0.1472) , which was until now the only one available for this transition. We use our 'astrophysical' f to investigate the S abundance in two damped Ly α absorption systems (DLAs) observed with the UV–Visual Echelle Spectrograph (UVES) at the European Southern Observatory's 8.2-m Kueyen telescope. In the case of the absorber at z abs=3.02486 towards QSO 0347-3819, we find a sulphur column density which is consistent, within errors, with that determined by Centurión et al. by means of the λ 125.9-nm line, thus providing an external check on the accuracy of our f value. For the damped absorber at z abs=4.4680 towards BR J0307-4945, we determine a high value of the S abundance, which, however, is probably the result of blending with Ly α forest lines.  相似文献   

11.
We have used far-infrared data from IRAS , Infrared Space Observatory ( ISO ), Spitzer Wide-Area Infrared Extragalactic (SWIRE), Submillimetre Common User Bolometer Array (SCUBA) and Max-Planck Millimetre Bolometer (MAMBO) to constrain statistically the mean far-infrared luminosities of quasars. Our quasar compilation at redshifts  0 < z < 6.5  and I -band luminosities  −20 < I AB < −32  is the first to distinguish evolution from quasar luminosity dependence in such a study. We carefully cross-calibrate IRAS against Spitzer and ISO , finding evidence that IRAS 100-μm fluxes at <1 Jy are overestimated by ∼30 per cent. We find evidence for a correlation between star formation in quasar hosts and the quasar optical luminosities, varying as star formation rate (SFR)  ∝ L 0.44±0.07opt  at any fixed redshift below   z = 2  . We also find evidence for evolution of the mean SFR in quasar host galaxies, scaling as  (1 + z )1.6±0.3  at   z < 2  for any fixed quasar I -band absolute magnitude fainter than −28. We find no evidence for any correlation between SFR and black hole mass at  0.5 < z < 4  . Our data are consistent with feedback from black hole accretion regulating stellar mass assembly at all redshifts.  相似文献   

12.
We critically review the current null results on a varying fine-structure constant, α, derived from Very Large Telescope (VLT)/Ultraviolet and Visual Echelle Spectrograph (UVES) quasar absorption spectra, focusing primarily on the many-multiplet analysis of 23 absorbers from which Chand et al. reported a weighted mean relative variation of  Δα/α= (−0.06 ± 0.06) × 10−5  . Our analysis of the same reduced data , using the same fits to the absorption profiles , yields very different individual  Δα/α  values with uncertainties typically larger by a factor of ∼3. We attribute the discrepancies to flawed parameter estimation techniques in the original analysis and demonstrate that the original  Δα/α  values were strongly biased towards zero. Were those flaws not present, the input data and spectra should have given a weighted mean of  Δα/α= (−0.44 ± 0.16) × 10−5  . Although this new value does reflect the input spectra and fits (unchanged from the original work – only our analysis is different), we do not claim that it supports previous Keck/High Resolution Echelle Spectrograph (HIRES) evidence for a varying α: there remains significant scatter in the individual  Δα/α  values which may stem from the overly simplistic profile fits in the original work. Allowing for such additional, unknown random errors by increasing the uncertainties on  Δα/α  to match the scatter provides a more conservative weighted mean,  Δα/α= (−0.64 ± 0.36) × 10−5  . We highlight similar problems in other current UVES constraints on varying α and argue that comparison with previous Keck/HIRES results is premature.  相似文献   

13.
We have searched for molecular absorption lines at millimetre wavelengths in 11 gravitational lens systems discovered in the JVAS/CLASS surveys of flat spectrum radio sources. Spectra of only one source 1030+074 were obtained in the 3-, 2- and 1.3-mm bands at the frequencies corresponding to common molecular transitions of CO and HCO+ as continuum emission was not found in any of the other sources. We calculated upper limits to the column density in molecular absorption for 1030+074, using an excitation temperature of 15 K, to be N CO<6.3×1013 cm−2 and N HCO+<1.3×1011 cm−2 , equivalent to hydrogen column density of the order N H<1018 cm−2 , assuming standard molecular abundances. We also present the best upper limits of the continuum at the lower frequency for the other 10 gravitational lenses.  相似文献   

14.
Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a precise probe for variability of the fine-structure constant, α , over cosmological time-scales. We constrain variation in α in 21 Keck/HIRES Si  iv absorption systems using the alkali-doublet (AD) method in which changes in α are related to changes in the doublet spacing. The precision obtained with the AD method has been increased by a factor of 3:     . We also analyse potential systematic errors in this result. Finally, we compare the AD method with the many-multiplet method, which has achieved an order of magnitude greater precision, and we discuss the future of the AD method.  相似文献   

15.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

16.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

17.
We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at   z = 2.85  in the Spitzer First Look Survey region and is extended over ∼80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200 pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof–Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof–Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO  ( L bol∼ 3.4 ± 0.2 × 1013 L)  and a 1.4 Gyr old simple stellar population with mass  ∼3.9 ± 0.3 × 1011 M  .  相似文献   

18.
We report on a survey for narrow (full widths at half-minimum <600 km s−1) C  iv absorption lines in a sample of bright quasars at redshifts  1.8 ≤ z < 2.25  in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow C  iv absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad Mg  ii emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find that a substantial number (  ≥43 ± 6  per cent) of absorbers with   W λ15480 > 0.3  Å in the velocity range  +750 ≲ v ≲+ 12 000  km s−1 are intrinsic to the active galactic nucleus outflow. This 'outflow fraction' peaks near   v =+2000  km s−1 with a value of   f outflow≃ 0.81 ± 0.13  . At velocities below   v ≈+ 2000  km s−1, the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disc. Furthermore, we find that outflow absorbers are on average broader and stronger than cosmologically intervening systems. Finally, we find that ∼14 per cent of the quasars in our sample exhibit narrow, outflowing C  iv absorption with   W λ15480 > 0.3  Å, slightly larger than that for broad absorption line systems.  相似文献   

19.
We present the results of a long (∼93 ks) XMM–Newton observation of the bright BL-Lac object  PKS 0548-322 ( z = 0.069)  . Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength  λ= 23.33 ± 0.01 Å  , which we interpret as O  vi Kα absorption at   z = 0.058  , i.e. ∼3000 km s−1 from the background object. The observed equivalent width of the absorption line, ∼30 mÅ, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density of   N O VI∼ 2 × 1016 cm−2  and turbulence with a Doppler velocity parameter   b > 100 km s−1  . Within the limitations of our RGS spectrum, no O  vii or O  v Kα absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is  ∼2.5 × 105 K  , with significantly lower or higher values being excluded by our limits on O  v or O  vii . If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through O  vi absorption. The existence of such a high column density absorber, much stronger than any previously detected one in O  vi , would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.  相似文献   

20.
We investigate the dependence of QSO Ly α absorption features on the temperature of the absorbing gas and on the amplitude of the underlying dark-matter fluctuations. We use high-resolution hydrodynamic simulations in cold dark matter dominated cosmological models. In models with a hotter intergalactic medium (IGM), the increased temperature enhances the pressure gradients between low- and high-density regions and this changes the spatial distribution and the velocity field of the gas. Combined with more thermal broadening, this leads to significantly wider absorption features in hotter models. Cosmological models with little small-scale power also have broader absorption features, because fluctuations on the scale of the Jeans length are still in the linear regime. Consequently, both the amplitude of dark-matter fluctuations on small scales and thermal smoothing affect the flux decrement distribution in a similar way. However, the b -parameter distribution of Voigt profile fits, obtained by deblending the absorption features into a sum of thermally broadened lines, is largely independent of the amount of small-scale power, but does depend strongly on the IGM temperature. The same is true for the two-point function of the flux and for the flux power spectrum on small scales. These three flux statistics are thus sensitive probes of the temperature of the IGM. We compare the values computed for our models and obtained from a HIRES spectrum of the quasar Q1422+231 and conclude that the IGM temperature at z ∼3.25 is fairly high, T 0≳15 000 K. The flux decrement distribution of the observed spectrum is fitted well by that of a ΛCDM model with that temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号