首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
The Early Permian Warchha Sandstone is well preserved in subsurface in the Potwar Basin and the Punjab Plain of Pakistan. However, this succession is only exposed in the Salt Range, and within this region, only a modest number of the many outcrops are of sufficient quality to enable the preparation of lateral and vertical log profiles. From the subsurface, data from five wells drilled in the Salt Range and Potwar Basin have been analysed. Although they are of restricted coverage, these subsurface data — which take the form of gamma ray logs and well cuttings — provide a valuable addition to the outcrop dataset of the Warchha Sandstone as they provide useful information about vertical textural changes, type and thickness of bedding and the nature of sandbody contacts with underlying strata. Overall, the Warchha Sandstone succession is composed of repeated fining-upwards cycles indicative of a meandering fluvial succession. Sub-components of each cycle are themselves classified into six subsurface sedimentary facies. Through comparison with outcropping parts of the succession, the origin and significance of these subsurface facies can be related to specific architectural elements within the meandering fluvial system responsible for generating the Warchha Sandstone succession.  相似文献   

2.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   

3.
Tectonic activity, sea-level changes, and the climate controlled sedimentation in Late Paleozoic basins of western Argentina. The role of each factor is investigated from the geologic record of the Río Blanco and Paganzo basins using three hierarchical orders of stratigraphic bounding surfaces. First-order surfaces correspond to regional unconformities, second-order ones to local unconformities with a lesser regional extent, and third-order surfaces represent locally extended sedimentary truncation. Using this methodology, the Carboniferous–Permian record of the Paganzo and Río Blanco basins may be divided into two megasequences, four sequences, and 12 stratigraphic sections. Megasequences are bounded by regional unconformities that result from tectonic events important enough to cause regional paleogeographic changes. Sequences are limited by minor regional extension surfaces related to local tectonic movements or significant sea-level falls. Finally, stratigraphic sections correspond to extended sedimentary truncations produced by transgressive events or major climatic changes. Sequence I is mainly composed of marine deposits divided into basal infill of the basin (Section 1) and Tournaisian–Visean transgressive deposits (Section 2). Sequence II is bounded by a sharp erosional surface and begins with coarse conglomerates (Section 3), followed by fluvial and shallow marine sedimentary rocks (Section 4) that pass upward into shales and diamictites (Section 5). The base of Sequence III is marked by an extended unconformity covered by Early Pennsylvanian glacial sedimentary rocks (Section 6) that represent the most important glacial event along the western margin of Gondwana. Postglacial deposits (Section 7) occur in the two basins and comprise both glaciolacustrine (eastern region) and transgressive marine (central and western regions) deposits. By the Moscovian–Kasimovian, fluvial sandstones and conglomerates were deposited in most of the Paganzo Basin (Section 8), while localized volcanic activity took place in the Río Blanco Basin. Near the end of the Carboniferous, an important transgression is recorded in the major part of the Río Blanco Basin (Section 9), reaching the westernmost portion area of the Paganzo Basin. Finally, Sequence IV shows important differences between the Paganzo and Río Blanco basins; fluvial red beds (Section 10), eolian sandstones (Section 11), and low-energy fluvial deposits (Section 12) prevailed in the Paganzo Basin whereas volcaniclastic sedimentation and volcanism dominated in the Río Blanco Basin. Thus, tectonic events, sea-level changes and climate exerted a strong and complex control on the evolution of the Río Blanco and Paganzo basins. The interaction of these allocyclic controls produced not only characteristic facies association patterns but also different kinds of stratigraphic bounding surfaces.  相似文献   

4.
The Warchha Sandstone of the Salt Range of Pakistan is a continental succession that accumulated as part of a meandering, fluvial system during Early Permian times. Several fining-upward depositional cycles are developed, each of which is composed of conglomerate, cross-bedded sandstone and, in their upper parts, bioturbated siltstone and claystone units with distinctive desiccation cracks and carbonate concretions. Clast lithologies are mainly of plutonic and low-grade metamorphic origin, with an additional minor sedimentary component. Textural properties of the sandstone are fine- to coarse-grained, poorly to moderately sorted, sub-angular to sub-rounded, and with generally loose packing. Based on modal analyses, the sandstone is dominantly a feldspathoquartzose (arkose to sub-arkose). Detrital constituents are mainly composed of monocrystalline quartz, feldspars (more K-feldspar than plagioclase) and various types of lithic clasts. XRD and SEM studies indicate that kaolinite is the dominant clay mineral and that it occurs as both allogenic and authigenic forms. However, illite, illite-smectite mixed layer, smectite and chlorite are also recognised in both pores and fractures. Much of the kaolinite was likely derived by the severe chemical weathering of previously deposited basement rocks under the influence of a hot and humid climate. Transported residual clays deposited as part of the matrix of the Warchha Sandstone show coherent links with the sandstone petrofacies, thereby indicating the same likely origin. Illite, smectite and chlorite mainly occur as detrital minerals and as alteration products of weathered acidic igneous and metamorphic rocks. Based primarily on fabric relationship, the sequence of cement formation in the Warchha Sandstone is clay (generally kaolinite), iron oxide, calcareous and siliceous material, before iron-rich illite and occasional mixed layer smectite–illite and rare chlorite. Both petrographic analysis and field characteristics of the sandstone indicate that the source areas were characterised by uplift of a moderate to high relief continental block that was weathered under the influence of hot and humid climatic conditions. The rocks weathered from the source areas included primary granites and gneisses, together with metamorphic basement rocks and minor amounts of sedimentary rocks. Regional palaeogeographic reconstructions indicate that much of the Warchha Sandstone detritus was derived from the Aravalli and Malani ranges and surrounding areas of the Indian Craton to the south and southeast, before being transported to and deposited within the Salt Range region under the influence of a semi-arid to arid climatic regime.  相似文献   

5.
Triassic basins of England developed under a regime of largely W–E extension and progressed from non-marine fluvial and aeolian sedimentation (Sherwood Sandstone Group), through marine-influenced playa lacustrine deposits (Mercia Mudstone Group) to marine environments (Penarth Group). A new tectono-stratigraphic model for the Sherwood Sandstone Group is proposed in which two major long-distance river systems developed under conditions of relative fault inactivity in the Early Triassic (Budleigh Salterton Pebble Beds and equivalent) and Middle Triassic (Otter Sandstone and equivalent). These are separated by a late Early Triassic syn-rift succession of fluvio–aeolian sandstones (Wildmoor Sandstone and Wilmslow Sandstone formations) and playa lacustrine muds (Nettlecombe Formation) which show major thickness variation and localisation with hanging wall basins. The partitioning of syn-rift deposits into mudstones within upstream basins (close to the source of water and sediment) and clean aeolian or fluvio–aeolian sandstones in downstream basins is similar to the pattern observed in the underlying late Permian. Under conditions of rapid tectonic subsidence chains of extensional basins may become disconnected with upstream basins (Wessex Basin) acting as traps for fines and water permitting more aeolian activity in temporarily unlinked downstream basins (Worcester and Cheshire basins). In addition to tectonic controls, fluctuating climate, relief related to limestone resilience in arid settings, the smoothing effect of fill and spill sedimentation and Tethyan sea-level change all contributed toward the observed Triassic stratigraphy in England.  相似文献   

6.
The 30 to 155 m thick Early Permian (Artinskian) Warchha Sandstone of the Salt Range, Pakistan is a conglomerate, sandstone and claystone succession within which seven lithofacies types (Gt, St, Sp, Sr, Sh, Fl and Fm) occur in a predictable order as repeated fining-upward cycles. Common sedimentary structures in the conglomerates and sandstones include planar and trough cross-bedding, planar lamination, soft sediment-deformed bedding, compound cosets of strata with low-angle inclined bounding surfaces and lags of imbricated pebbles. Structures in the finer-grained facies include desiccation cracks, raindrop imprints, caliche nodules and bioturbation. Groups of associated facies are arranged into nine distinct architectural elements (channels, gravel bars, sandy bedforms, downstream and laterally accreting barforms, sand sheets, crevasse splays, levees, floodplain units and shallow lakes), which is consistent with a fluvial origin for the succession. The types of architectural elements present and their relationship to each other demonstrate that the Warchha Sandstone preserves a record of a meandering river system that drained the northern margin of Gondwanaland. The dominance of fine-grained (floodplain) facies over gravel-grade (channel-base) facies and the widespread occurrence of large-scale lateral accretion elements supports the interpretation of a high-sinuosity, meandering fluvial system in which channel bodies accumulated via the lateral accretion of point bars but in which the active channels covered only a small part of a broad floodplain at any time instant. Although the regional and temporal distribution of these deposits is complex, in broad terms the lower part is dominated by stacked, multistorey channel bodies, whereas single-storey channel elements isolated in abundant fine-grained floodplain deposits dominate the middle and upper parts of the formation.  相似文献   

7.
This paper comprises of two sections. The first section describes challenges in the Carboniferous–Permian Gondwanan stratigraphic palynology, and progress in techniques such as presence of the ‘rare-marine intervals’, and ‘radiometric dating’ in some Gondwanan successions, e.g., South Africa, Australia and South America, as tools to confidently calibrate these palynozones. The second section describes developments in the palynological work on the Carboniferous–Permian Nilawahan Group of the Salt Range, Pakistan, and summarises their correlation with the coeval succession of the Gondwana continents and with the Russian/International stages.  相似文献   

8.
Tectonic activity, sea-level changes, and the climate controlled sedimentation in Late Paleozoic basins of western Argentina. The role of each factor is investigated from the geologic record of the Río Blanco and Paganzo basins using three hierarchical orders of stratigraphic bounding surfaces. First-order surfaces correspond to regional unconformities, second-order ones to local unconformities with a lesser regional extent, and third-order surfaces represent locally extended sedimentary truncation. Using this methodology, the Carboniferous–Permian record of the Paganzo and Río Blanco basins may be divided into two megasequences, four sequences, and 12 stratigraphic sections. Megasequences are bounded by regional unconformities that result from tectonic events important enough to cause regional paleogeographic changes. Sequences are limited by minor regional extension surfaces related to local tectonic movements or significant sea-level falls. Finally, stratigraphic sections correspond to extended sedimentary truncations produced by transgressive events or major climatic changes. Sequence I is mainly composed of marine deposits divided into basal infill of the basin (Section 1) and Tournaisian–Visean transgressive deposits (Section 2). Sequence II is bounded by a sharp erosional surface and begins with coarse conglomerates (Section 3), followed by fluvial and shallow marine sedimentary rocks (Section 4) that pass upward into shales and diamictites (Section 5). The base of Sequence III is marked by an extended unconformity covered by Early Pennsylvanian glacial sedimentary rocks (Section 6) that represent the most important glacial event along the western margin of Gondwana. Postglacial deposits (Section 7) occur in the two basins and comprise both glaciolacustrine (eastern region) and transgressive marine (central and western regions) deposits. By the Moscovian–Kasimovian, fluvial sandstones and conglomerates were deposited in most of the Paganzo Basin (Section 8), while localized volcanic activity took place in the Río Blanco Basin. Near the end of the Carboniferous, an important transgression is recorded in the major part of the Río Blanco Basin (Section 9), reaching the westernmost portion area of the Paganzo Basin. Finally, Sequence IV shows important differences between the Paganzo and Río Blanco basins; fluvial red beds (Section 10), eolian sandstones (Section 11), and low-energy fluvial deposits (Section 12) prevailed in the Paganzo Basin whereas volcaniclastic sedimentation and volcanism dominated in the Río Blanco Basin. Thus, tectonic events, sea-level changes and climate exerted a strong and complex control on the evolution of the Río Blanco and Paganzo basins. The interaction of these allocyclic controls produced not only characteristic facies association patterns but also different kinds of stratigraphic bounding surfaces.  相似文献   

9.
The existing stratigraphic nomenclature applied to the Early and Middle Triassic Sherwood Sandstone Group in NW England has resulted from more than 150 years of geological investigation, but is characterized by a lithostratigraphic system that is insufficiently flexible to allow for variations in lithology and sedimentary facies within a continental depositional system. A revised well correlation based on the detrital mineralogical and chemical composition of the Ormskirk Sandstone Formation in four offshore wells, that is then extended to provide near‐basin‐wide well correlations using a regional shale marker, confirms previously suggested but unproven diachroneity at the top of the Sherwood Sandstone Group. It also reveals the presence of incised valleys filled by stacked amalgamated fluvial channel sandstones and cut into previously deposited aeolian and sandflat sequences as well as older fluvial channel sandstones. The combination of well correlations indicates that the valleys were incised by a fluvial system flowing NW from the Cheshire Basin into the East Irish Sea Basin and then west towards the Peel and Kish Bank basins. The stratal geometry of the upper part of the Sherwood Sandstone Group is suggested to conform to models of climatically mediated alternations of fluvial degradation and aggradation in response to changes in the relationship between sediment flux and stream discharge. This model is supported in the Sherwood Sandstone Group by climatically driven variations in the non‐channelized facies which record upward wetting and drying cycles that can be locally tied to fluvial incision surfaces, and suggest a hierarchy of at least three levels of climatic cyclicity recorded within the sedimentary succession. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Sediments of the Ordovician to Devonian Sinakumbe Group (∼210 m thick) and overlying Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼4.5 km thick) were deposited in the mid-Zambezi Rift Valley Basin, southern Zambia.The Sinakumbe-Karoo succession represents deposition in a extensional fault-controlled basin of half-graben type. The basin-fill succession incorporates two major fining-upward cycles that resulted from major tectonic events, one event beginning with Sinakumbe Group sedimentation, possibly as early as Ordovician times, and the other beginning with Upper Karoo Group sedimentation near the Permo-Triassic boundary. Minor tectonic pulses occurred during deposition of the two major cycles. In the initial fault-controlled half-graben, a basin slope and alluvial fan system (Sikalamba Conglomerate Formation), draining southeastward, was apparently succeeded, without an intervening transitional facies, by a braided river system (Zongwe Sandstone Formation) draining southwestward, parallel to the basin margin. Glaciation followed by deglaciation resulted in glaciofluvial and glacio-lacustrine deposits of the Upper Carboniferous to Lower Permian Siankondobo Sandstone Formation of the Lower Karoo Group, and isostatic rebound eventually produced a broad flood plain on which the coal-bearing Lower Permian Gwembe Coal Formation was deposited. Fault-controlled maximum subsidence is represente by the lacustrine Upper Permian Madumabisa Mudstone Formation. Block-faulting and downwarping, probably due to the Gondwanide Orogeny, culminated with the introduction of large quantities of sediment through braided fluvial systems that overwhelmed and terminated Madumabisa Lake sedimentation, and is now represented by the Triassic Escarpment Grit and Interbedded Sandstone and Mudstone Formations of the Upper Karoo Group. Outpourings of basaltic flows in the Early Jurassic terminated Karoo sedimentation.  相似文献   

11.
The stratigraphy of the Devonian to Permian succession in Northwest Peninsular Malaysia is revised. The Timah Tasoh Formation consists of black mudstone containing graptolites and tentaculitids indicating a Pragian or earliest Emsian age. The Sanai Limestone overlies the Timah Tasoh Formation at Sanai Hill B and contains conodonts indicating a Late Devonian (Frasnian to possibly early Famennian) age. In other places, Late Tournaisian chert of the Telaga Jatoh Formation overlies the Timah Tasoh Formation. The overlying Kubang Pasu Formation is predominantly composed of mudstone and sandstone, and can be divided into 3 subunits, from oldest to youngest: (1) Chepor Member; (2) Undifferentiated Kubang Pasu Formation; (3) Uppermost Kubang Pasu Formation. The ammonoid Praedaraelites tuntungensis sp. nov. is reported and described from the Chepor Member of Bukit Tuntung, Pauh. The genus indicates a Late Viséan age for part of the subunit. Dropstones and diamictites from the Chepor Member indicate a glacial marine depositional environment. The Carbo-Permian, undifferentiated Kubang Pasu Formation consists of similar interbedded mudstone and sandstone. The uppermost Kubang Pasu Formation of Kungurian age consists of coarsening upward cycles of clastics, representing a shallow marine, wave- and storm-influenced shoreline. The Permian Chuping Limestone also represents shallow marine, wave- and storm-influenced deposits. A Mid-Palaeozoic Unconformity separating Early–Late Devonian rocks from overlying Late Devonian–Carboniferous deposits probably marks initiation of rifting on Sibumasu, which eventually led to the separation of Sibumasu from Australian Gondwana during the late Sakmarian (Early Permian).  相似文献   

12.
The Karoo Supergroup outcropst in the mid-Zambezi Valley, southern Zambia. It is underlain by the Sinakumbe Group of Ordovician to Devonian age. The Lower Karoo Group (Late Carboniferous to Permian age) consists of the basal Siankondobo Sandstone Formation, which comprises three facies, overlain by the Gwembe Coal Formation with its economically important coal deposits, in turn overlain by the Madumabisa Mudstone Formation which consists of lacustrine mudstone, calcilutite, sandstone, and concretionary calcareous beds. The Upper Karoo Group (Triassic to Early Jurassic) is sub-divided into the coarsely arenaceous Escarpment Grit, overlain by the fining upwards Interbedded Sandstone and Mudstone, Red Sandstone; and Batoka Basalt Formations.Palynomorph assemblages suggest that the Siankondobo Sandstone Formation is Late Carboniferous (Gzhelian) to Early Permian (Asselian to Early Sakmarian) in age, the Gwembe Coal Formation Early Permian (Artinskian to Kungurian), the Madumabisa Mudstone Late Permian (Tatarian), and the Interbedded Sandstone and Mudstone Early or Middle Triassic (Late Scythian or Anisian). The marked quantitative variations in the assemblages are due partly to age differences, but they also reflect vegetational differences resulting from different paleoclimates and different facies.The low thermal maturity of the formations (Thermal Alteration Index 2) suggests that the rocks are oil prone. However, the general scarcity of amorphous kerogen, such as the alga Botryococcus sp., and the low proportion of exinous material, indicates a low potential for liquid hydrocarbons. Gas may have been generated, particularly in the coal seams of the Gwembe Coal Formation, that are more deeply buried.  相似文献   

13.
The Permian Hutchinson Salt Member of the Wellington Formation of the Sumner Group of Kansas (USA) has multiple scientific and industrial uses. Although this member is highly utilized, there has not been a sedimentological study on these rocks in over 50 years, and no study has investigated the full thickness of this member. Past publications have inferred a marine origin as the depositional environment. Here, this marine interpretation is challenged. The goals of this study are to fully document sedimentological and stratigraphic characteristics of the Permian Hutchinson Salt Member in the Atomic Energy Commission Test Hole 2 core from Rice County, Kansas. This study documents colour, mineralogy, sedimentary textures, sedimentary structures, diagenetic features and stratigraphic contacts in core slab and thin sections. The Hutchinson Salt Member is composed of five lithologies: bedded halite, siliciclastic mudstone, displacive halite, bedded gypsum/anhydrite and displacive gypsum/anhydrite. These lithologies formed in shallow surface brines and mudflats that underwent periods of flooding, evapoconcentration and desiccation. Of note are the paucity of carbonates, lack of marine-diagnostic fossils, absence of characteristic marine minerals and lithofacies, and the stratigraphic context of the Hutchinson with associated continental deposits. The Hutchinson Salt Member was most likely deposited in an arid continental setting. This new interpretation offers a refined view of Pangaea during the middle Permian time.  相似文献   

14.
The Greta Coal Measures are the lower of two main coal‐bearing intervals in the Permian northern Sydney Basin. High quality outcrop and continuous core data are available from the Muswellbrook Anticline area in the Hunter Valley, enabling a sequence‐stratigraphic interpretation of the Greta Coal Measures to be presented for the first time. Age and core relationships indicate an unconformity at the base and the top of the Greta Coal Measures. A correlation between dated tuffs in the upper Greta Coal Measures in the Muswellbrook area and the Maitland Group in the Cessnock area establishes a clear diachronous upper boundary for the Greta Coal Measures resulting from a northwest‐ward marine transgression. The Greta Coal Measures are interpreted to occupy a single sequence in which the lower fluvial and lacustrine Skeletar Formation makes up a transgressive systems tract, the Ayrdale Sandstone Member is an estuarine unit around the maximum flooding surface, and the upper fluvial to deltaic Rowan Formation occupies a highstand systems tract. The overlying Jasdec Park Sandstone Member of the Maitland Group infills incised valleys above a sequence boundary and then occurs as a transgressive shoreline system before passing into the glacial marine Branxton Formation. The Greta Coal Measures represent high accommodation where subsidence and sediment supply were approximately balanced over more than 100 m of accumulation, and the development of 14 recognisable coal seams occurred in a single sequence.  相似文献   

15.
西藏林周旁多地区晚古生代层序地层特征   总被引:3,自引:0,他引:3  
通过详细的层序地层研究,重建了冈瓦纳大陆北缘石炭-二叠纪层序地层序列,在详细的岩相,准层序研究的基础上,划分出2个二级层序和11个三级层序。研究区的含砾细碎屑岩系滨岩浅水冰筏(或浮水)沉积物经密度流再搬运到深水区的产物。旁多群上部滨岸河流相沉积层序的发现,为石炭-二叠纪冰期研究提供了新的沉积岩石学资料。  相似文献   

16.
Recent work on the Late Palaeozoic Ice Age in eastern Australia has shown the Joe Joe Group in the eastern Galilee Basin, Queensland, to be of critical importance as it is one of few records of Pennsylvanian glacial activity outside South America. This paper presents detailed sedimentological data, from which the Late Palaeozoic environment of the region is reconstructed and which, consequently, allows for robust comment on the broader Gondwanan glaciation. The Jericho Formation, in the lower Joe Joe Group, was deposited in an active extensional basin in lacustrine to fluvial environments, during the mid‐Namurian to early Stephanian. The region experienced a cool climate during this time, and polythermal mountain or valley‐type glaciers periodically advanced into the area from highlands to the north‐east. The Jericho Formation preserves a suite of proglacial to terminal glacial facies that is characterized by massive and stratified diamictites deposited from debris flows, massive and horizontally laminated conglomerates and sandstones deposited from hyperconcentrated density flows, laminated siltstones with outsized clasts and interlaminated siltstone/conglomerate deposited through ice‐rafting into lakes, and sedimentary dykes and breccias deposited through overpressurization of groundwater beneath permafrost. Non‐glacial facies are dominated by fluvial sandstones and lacustrine/overbank siltstones. The glacigenic rocks of the Jericho Formation are confined to discrete packages, recording three separate glacial advances during the latest Namurian to late Westphalian. This arrangement is consistent with the temporal distribution of glacigenic rocks from around the remainder of Australia and Gondwana, which supports the theory that glacial deposits occurred in discrete intervals. The Joe Joe Group is a key succession in the world in this context as, at this time, eastern Australia provides the only unequivocal evidence of a Namurian/Westphalian glaciation outside South America. The continuous record of sedimentation through the Pennsylvanian and Early Permian is indicative of significant warming between glacial intervals, which is difficult to reconcile with the development of long‐lived, cold‐based ice sheets across the supercontinent.  相似文献   

17.
In Bengal basin the subcrop Gondwana sediments occur in N-S trending elongated grabens originated largely by the graben forming tectonisms of the Gondwanaland which overlie the crystalline basement in the sub-surface in an intra-cratonic setup. So far five wells in shelf part of Bengal Basin have penetrated Gondwana sediments, out of which three wells i.e.,G1, G3 and G2 have been drilled up to Precambrian basement. In subcrop Gondwana graben, glacial to glacio-fluvial Talchir Formation of Early Permian age was deposited above the basement. Early Permian Barakar Formation overlies Talchir Formaion. Flood basin model of deposition is postulated for this coal rich unit. In the absence of Barren Measure Formation, coal bearing Raniganj Formation overlies Barakar Formation. The fluvial set up changed over to arid environment during deposition of Panchet/Supra Panchet Formation (undifferentiated). The deposition of Panchet Formation is followed by eruption of doleritic rocks in both subcrop and outcrop Bengal Gondwana whereas lamprophyres are absent in subcrop of Bengal Gondwana. Rifting as well as pull-apart basin model due to transtensional movement is postulated for Gondwana basins. Detailed lithostratigraphic analysis of the core / cutting samples of the Gondwana sediments reveal that the sediments are mainly fine to coarse grained, poorly sorted sandstone. These sediments are characterized as poor reservoir and needs some treatment for permeability enhancement for hydrocarbon production.  相似文献   

18.
珠穆朗玛峰北坡冈瓦纳相地层的发现   总被引:4,自引:0,他引:4       下载免费PDF全文
尹集祥  郭师曾 《地质科学》1976,11(4):291-322
于1975年我国再次登上珠穆朗玛峰的科学考察活动中,在地质方面获得了地层、古生物、岩石、构造等方面比较珍贵的资料。珠峰科考资料研究的新成果是在反击右倾翻案风斗争取得伟大胜利的大好形势推动下取得的。本刊将发表《珠穆朗玛峰北坡冈瓦纳相地层的发现》等相互联系的一组文章,从地层、沉积、古生物的角度,以较丰富的资料证实了珠峰北坡冈瓦纳相地层的存在,这对于探讨珠穆朗玛峰及喜马拉雅山的隆起和地质发展史具有重要价值。  相似文献   

19.
An understanding of fluvial-aeolian deposition derived from modern case-examples in a previous study is applied to the Permian Cutler Formation and Cedar Mesa Sandstone on the Colorado Plateau. These formations supply an excellent three-dimensional exposure of intertonguing fluvial and aeolian strata. Four distinct facies associations form the bulk of the Cutler Formation and Cedar Mesa Sandstone: (1) aeolian dune deposits; (2) wet interdune deposits; (3) fluvial channel deposits; and (4) overbank-interdune deposits. In addition, two distinctive types of erosion surfaces are found within the Cutler Formation and Cedar Mesa Sandstone: pebble- to granule-rich erosion surfaces (aeolian deflation surfaces) and flood surfaces. Fluvial and aeolian intertonguing result in extensive tabular sheets of aeolian sandstone separated by flood surfaces and overbank-interdune deposits. Fluvial channels are associated with the deposits overlying flood surfaces and are incised into the underlying aeolian sandstones. Overbank-interdune deposits and wet interdune deposits cover flood surfaces and intertongue with overlying aeolian sandstones. The primary characteristics of ancient fluvial-aeolian deposition are overbank-interdune deposits and pronounced extensive erosion surfaces (flood surfaces), which are parallel to underlying fluvial sandstones and thus trend parallel to the palaeoslope and palaeohydrological gradient.  相似文献   

20.
Permian marine sedimentary rocks that crop out in northern Chile are closely related to the development of a Late Paleozoic magmatic arc. A study of Upper Paleozoic units east of Iquique (20°S) identified three members within the Juan de Morales Formation, each of which were deposited in a different sedimentary environment. A coarse-grained terrigenous basal member represents alluvial sedimentation from a local volcanic source. A mixed carbonate-terrigenous middle member represents coastal and proximal shallow marine sedimentation during a relative sea-level rise related with a global transgression. Preliminary foraminifer biostratigraphy of this middle member identified a late Early Permian (late Artinskian–Kungurian) highly impoverished nodosarid–geinitzinid assemblage lacking fusulines and algae, which is characteristic of temperate cold waters and/or disphotic zone. The upper fine-grained terrigenous member represents shallow marine siliciclastic sedimentation under storm influence. The Juan de Morales Formation consists of continental, coastal and shallow marine sediments deposited at the active western margin of Gondwana at mid to low latitudes. A revised late Early Permian age and similar paleogeography and sedimentary environments are also proposed for the Huentelauquén Formation and related units of northern and central Chile, Arizaro Formation of northwestern Argentina, and equivalent units of southernmost Peru.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号