首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following previous publication of major–minor elementdata, this paper presents rare earth element (REE) data forheterogeneous (chemically zoned) garnets belonging to the peridotitesuite of mantle xenoliths from the Jagersfontein kimberlitepipe, South Africa. The rim compositions of the garnets in thehighest temperature–pressure (deepest) deformed peridotitesshow a typical megacryst-like pattern, of very low light REE(LREE) increasing through the middle REE (MREE) to a plateauof heavy REE (HREE) at c. 20 times chondrite; these compositionswould be in equilibrium with small-volume melts of the mid-oceanridge basalt (MORB) source (asthenosphere). With decreasingdepth the garnet rims show increasing LREE and decreasing HREE,eventually resulting in humped relative abundance patterns.A set of compositions is calculated for melts that would bein equilibrium with the garnet rims at different depths. Theseshow decreasing relative abundance of each REE from La to Lu,and the La/Lu ratio of the melts increases with decreasing depthof formation. Modelling of the effects of crystal fractionationshows that this process could largely generate the sequenceof garnet rim and melt compositions found with decreasing depth,including the humped REE patterns in high-level garnets. Consideringthe behaviour of major–minor elements as well as REE,a process of percolative fractional crystallization is advocatedin which megacryst source melts percolate upwards through peridotitesand undergo fractionation in conjunction with exchange withthe peridotite minerals. The initial megacryst melt probablyincludes melt of lithospheric origin as well as melt from theMORB source, and it is suggested that the process of percolativefractional crystallization may form a variety of metasomaticand kimberlitic melts from initial megacryst melts. Repeatedmetasomatism of the lower lithosphere by such differentiatingmelts is suggested by consideration of garnet core compositions.Such metasomatism would progressively convert harzburgites tolherzolites by increasing their CaO content, and this may accountfor the fact that the Cr-rich diamond–garnet harzburgiteparagenesis is commonly preserved only where it has been encapsulatedin diamonds. KEY WORDS: cratonic lithosphere; garnet zoning; mantle xenoliths; megacryst magma; metasomatic melt  相似文献   

2.
Garnet-rich rocks occur throughout the Proterozoic southern Curnamona Province, Australia, where they are, in places, spatially related to Broken Hill-type Pb-Zn-Ag deposits. Fine-scale bedding in these rocks, their conformable relationship with enclosing metasedimentary rocks, and their enrichment in Mn and Fe suggest that they are metamorphosed chemical precipitates. They formed on the floor of a 1.69?Ga continental rift basin from hydrothermal fluids mixed with seawater and detritus. Garnet in garnet-quartz and garnet-amphibole rocks is generally light rare earth element (LREE) depleted, and has flat heavy REE (HREE) enriched chondrite-normalized REE patterns, and negative Eu anomalies (Eu/Eu*?<?1). Garnet in garnet-rich rocks from the giant Broken Hill deposit has similar REE patterns and either positive (Eu/Eu*?>?1) or negative Eu anomalies. Manganese- and Mn-Ca-rich, Fe-poor garnets in garnetite, garnet-hedenbergite, and garnet-cummingtonite rocks at Broken Hill have Eu/Eu*?>?1, whereas garnet in Mn-poor, Fe-rich quartz garnetite and quartz-garnet-gahnite rocks from Broken Hill, and quartz garnetite from other locations have Eu/Eu*?<?1. The REE patterns of garnet and its host rock and interelement correlations among REEs and major element contents in garnet and its host rock indicate that the Eu anomaly in garnet reflects that of its host rock and is related to the major element composition of garnet and its host rock. The value of Eu/Eu* in garnet is related to its Mn, Fe, and Ca content and that of its host rock, and the distribution of REEs among garnet and accessory phases (e.g., feldspar). Positive Eu anomalies reflect high amounts of Eu that was preferentially incorporated into Mn- and Mn-Ca-rich oxides and carbonates in the protolith. In contrast, Eu/Eu*?<?1 indicates the preferential discrimination against Eu by Fe-rich, Mn-poor precursor minerals. Precursors to Mn-rich garnets at Broken Hill formed by precipitation from cooler and more oxidized hydrothermal fluids compared to those that formed precursors to Mn-poor, Fe-rich garnet at Broken Hill and the other locations. Garnet from the Broken Hill deposit is enriched in Zn (> 400?ppm), Cr (> 140?ppm), and Eu (up to 6?ppm and positive Eu anomalies), and depleted in Co, Ti, and Y compared to garnet in garnet-rich rocks from other localities. These values, as well as MnO contents ?>?15 wt. % and Eu/Eu*?>?1 are only found at the Broken Hill deposit and are good indicators of the presence of Broken Hill-type mineralization.  相似文献   

3.
REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determine  相似文献   

4.
Peridotites that sample Archean mantle roots are frequentlyincompatible trace element enriched despite their refractorymajor element compositions. To constrain the trace element budgetof the lithosphere beneath the Canadian craton, trace elementand rare earth element (REE) abundances were determined fora suite of garnet peridotites and garnet pyroxenites from theNikos kimberlite pipe on Somerset Island, Canadian Arctic, theirconstituent garnet and clinopyroxene, and the host kimberlite.These refractory mantle xenoliths are depleted in fusible majorelements, but enriched in incompatible trace elements, suchas large ion lithophile elements (LILE), Th, U and light rareearth elements (LREE). Mass balance calculations based on modalabundances of clinopyroxene and garnet and their respectiveREE contents yield discrepancies between calculated and analyzedREE contents for the Nikos bulk rocks that amount to LREE deficienciesof 70–99%, suggesting the presence of small amounts ofinterstitial kimberlite liquid (0·4–2 wt %) toaccount for the excess LREE abundances. These results indicatethat the peridotites had in fact depleted or flat LREE patternsbefore contamination by their host kimberlite. LREE and Sr enrichmentin clinopyroxene and low Zr and Sr abundances in garnet in low-temperatureperidotites (800–1100°C) compared with high-temperatureperidotites (1200–1400°C) suggest that the shallowlithosphere is geochemically distinct from the deep lithospherebeneath the northern margin of the Canadian craton. The Somersetmantle root appears to be characterized by a depth zonationthat may date from the time of its stabilization in the Archean. KEY WORDS: Canada; mantle; metasomatism; peridotite; trace elements  相似文献   

5.
陈欢  冯梦  康志强  付伟  冯佐海 《地球科学》2020,45(6):2059-2076
为了解桂东北伟晶岩岩浆的形成环境及演化过程,对桂东北茅安塘Nb-Ta-Be-Rb稀有金属矿床周围伟晶岩中的石榴子石进行了镜下观察、电子探针(EPMA)和LA-ICP-MS原位微区主微量元素研究,探讨石榴子石的成因及其对成岩及成矿作用的指示.结果表明,桂东北茅安塘地区伟晶岩中的石榴子石为岩浆成因石榴子石,属于铁铝榴石-锰铝榴石(平均Alm49.28-Sps47.09)固溶体系列,可分为早期形成的Ⅰ型石榴子石(GrtⅠ)和晚期形成的Ⅱ型子石(GrtⅡ).两期石榴子石均以富集重稀土(HREE)、高场强元素(HFSE),亏损轻稀土(LREE)和缺乏大离子亲石元素(LILE)为特征,∑REE配分模式呈明显左倾趋势,显著的Eu负异常.石榴子石生长过程中的界面反应速率小于物质迁移速率,水岩作用较弱,∑REE主要以表面吸附或吸收的形式进入石榴子石中,是导致其重稀土(HREE)元素富集,轻稀土元素亏损的主要原因.随着岩浆分异演化程度的不断提高,∑REE逐渐进入并赋存于石榴子石中,促进岩浆从早期的低分馏(未分馏)的岩浆熔体逐渐向晚期的高分馏的岩浆熔体演化.石榴子石中HREE含量随岩浆演化程度逐渐增加表明,晚期分异演化的岩浆-热液中逐渐富集稀土及稀有金属元素.这些晚期富含成矿元素的热液流体交代原生矿物,导致外侧带及核部花岗伟晶岩中发育大量交代成因的稀土和稀有金属矿物.   相似文献   

6.
本文对朱溪超大型钨(铜)矿床中两类与白钨矿密切相关的石榴石进行了研究。研究表明,这两类共存的石榴石与夕卡岩型矿床中常见的同期热液在不同阶段形成的两种石榴石不同。早期石榴石相对更加富Fe(Ad37.17~41.84Gr54.83~59.57Sp3.10~4.62),而晚期石榴石更加富Al(Ad12.69~14.42Gr77.56~79.03Sp0.44~0.92),成分上更接近钙铝榴石端员,具有更低的Sn含量,更高的U含量,并在稀土配分曲线中显示出更明显的正Eu异常,表明晚期石榴石形成时的氧逸度明显低于早期石榴石形成时的氧逸度。晚期石榴石相对于早期石榴石具有更高的Cu、Pb、Zn、Li、Be、B、Rb、Cs、Sr含量和更低的W、Mo、Ga、Ge含量,并且与成矿相关岩体具有相似的稀土配分模式曲线,表明晚期石榴石与朱溪矿床的成矿相关岩浆演化而形成的残余岩浆热液流体具有更加密切的相关性。本文研究的两类共存的石榴石可能是两期成矿热液流体作用的产物,暗示朱溪矿床的成矿作用可能与多期岩浆活动有关。  相似文献   

7.
The Sangan iron skarn deposit is located in the Sabzevar-Dorouneh Magmatic Belt of northeastern Iran. The skarn contains zoned garnet, clinopyroxene and magnetite. Cores and rims of zoned garnets are generally homogeneous, having a relatively high ΣREE, low ΣLREE/ΣHREE ratios, and positive Eu anomalies. The cores of the zoned clinopyroxenes are exceptionally HREE-rich, with relatively high ΣREE and HREE/LREE ratios, as well as positive Eu anomalies. Clinopyroxene rims are LREE-rich, with relatively low ΣREE contents and HREE/LREE ratios, and do not have Eu anomalies. Magnetite grains are enriched in LREEs in comparison with the HREEs and lack Eu anomalies. Variations of fluid composition and physicochemical conditions rather than YAG-type substitution mechanism are considered to have major control on incorporating trace elements, including REE, into the skarn mineral assemblage. Based on baro-acoustic decrepitation analysis, the calc-silicate and magnetite dominant stages were formed at similar temperatures, around 350–400 °C. In the Sangan skarns, hydrothermal fluids shifted from near-neutral pH, reduced conditions with relatively high ΣREE, low LREE/HREE ratios, and U-rich characteristics towards acidic, oxidized conditions with relatively low ΣREE, high LREE/HREE ratios, and U-poor characteristics.  相似文献   

8.
对安徽铜陵冬瓜山铜矿石榴石的地球化学特征进行了研究,并进行了成因探讨。野外调查及镜下观察发现,冬瓜山铜矿石榴石分为两期形成,第Ⅰ期石榴石环带发育,颜色较深,呈褐-棕黄色;第Ⅱ期石榴石呈他形-半自形穿切Ⅰ期,颜色较浅,呈浅黄-蜡白色,具非均质性。石榴石主量、稀土元素的等离子光谱(LA-ICP-MS)分析结果显示这两期石榴石有较大差别:第Ⅰ期石榴石钙铁榴石组分含量较高,可达94.14%,稀土元素配分模式为轻稀土元素富集、Eu正异常的右倾曲线;第Ⅱ期石榴石则相对富铝,钙铝榴石组分含量达44.06%,稀土元素配分模式为重稀土元素略微富集、Eu负异常的平缓曲线。这些特征表明,第Ⅰ期石榴石为岩浆成因,形成于较氧化环境;第Ⅱ期石榴石为热液交代成因,形成于较还原环境。  相似文献   

9.
Grossular-andradite (grandite) garnets, precipitated from hydrothermal solutions is associated with contact metamorphism in the Kal-e Kafi skarn show complex oscillatory chemical zonation. These skarn garnets preserve the records of the temporal evolution of contact metasomatism. According to microscopic studies and microprobe analysis profiles, the studied garnet has two distinct parts: the intermediate (granditic) composition birefringent core that its andradite content based on microprobe analysis varies between 0.68–0.7. This part is superimposed with more andraditic composition, and the isotropic rim which its andradite content regarding microprobe analysis ranges between 0.83–0.99. Garnets in the studied sample are small (0.5–2 mm in diameter) and show complex oscillatory zoning. Electron microprobe analyses of the oscillatory zoning in grandite garnet of the Kal-e Kafi area showed a fluctuation in chemical composition. The grandite garnets normally display core with intermediate composition with oscillatory Fe-rich zones at the rim. Detailed study of oscillatory zoning in grandite garnet from Kal-e Kafi area suggests that the garnet has developed during early metasomatism involving monzonite to monzodiorite granitoid body intrusion into the Anarak schist- marble interlayers. During this metasomatic event, Al, Fe, and Si in the fluid have reacted with Ca in carbonate rocks to form grandite garnet. The first step of garnet growth has been coeval with intrusion of the Kal-e Kafi granitoid into the Anarak schist- marble interlayers. In this period of garnet growth, change in fluid composition may cause the garnet to stop growing temporarily or keep growing but in a much slower rate allowing Al to precipitate rather than Fe. The next step consists of pervasive infiltration of Fe rich fluids and Fe rich grandite garnets formation as the rim of previously formed more Al rich garnets. Oscillatory zoning in the garnet probably reflects an oscillatory change in the fluid composition which may be internally and/or externally controlled. The rare earth elements study of these garnets revealed enrichment in light REEs (LREE) with a maximum at Pr and Nd and a negative to no Eu anomaly. This pattern is resulted from the uptake of REE out of hydrothermal fluids by growing crystals of calcsilicate minerals principally andradite with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet x site.  相似文献   

10.
 Diamond-bearing eclogites are an important component of the xenoliths that occur in the Mir kimberlite, Siberian platform, Russia. We have studied 16 of these eclogite xenoliths, which are characterized by coarse-grained, equigranular garnet and omphacite. On the basis of compositional variations in garnet and clinopyroxene, this suite of eclogites can be divided into at least two groups: a high-Ca group and a low-Ca group. The high-Ca group consists of high-Ca garnets in equilibrium with pyroxenes that have high Ca-ratios [Ca/(Ca+Fe+Mg)] and high jadeite contents. These high-Ca group samples have high modal% garnet, and garnet grains often are zoned. Garnet patches along rims and along amphibole- and phlogopite-filled veins have higher Mg and lower Ca contents compared to homogeneous cores. The low-Ca group consists of eclogites with low-Ca garnets in equilibrium with pyroxenes with a low Ca-ratio, but variable jadeite contents. These low-Ca group samples typically have low modal% of garnet, and garnets are rarely compositionally zoned. Three samples have mineralogic compositions and modes transitional to the high- and low-Ca groups. We have arbitrarily designated these samples as the intermediate-Ca group. The rare-earth-element (REE) contents of garnet and clinopyroxene have been determined by ion microprobe. Garnets from the low-Ca group have low LREE contents and typically have [Dy/Yb]n < 1. The high-Ca group garnets have higher LREE contents and typically have [Dy/Yb]n > 1. Garnets from the intermediate-Ca group have REE contents between the high- and low-Ca groups. Clinopyroxenes from the low-Ca group have convex-upward REE patterns with relatively high REE contents (ten times chondrite), whereas those from the high-Ca group have similar convex-upward shapes, but lower REE contents, approximately chondritic. Reconstructed bulk-rock REE patterns for the low-Ca group eclogites are relatively flat at approximately ten times chondrite. In contrast, the high-Ca group samples typically have LREE-depleted patterns and lower REE contents. The δ18O values measured for garnet separates range from 7.2 to 3.1‰. Although there is a broad overlap of δ18O between the low-Ca and high-Ca groups, the low-Ca group samples range from mantle-like to high δ18O values (4.9 to 7.2‰), and the high-Ca group garnets range from mantle-like to low δ18O values (5.3 to 3.1‰). The oxygen isotopic compositions of two of the five high-Ca group samples and four of the eight low-Ca group eclogites are consistent with seawater alteration of basaltic crust, with the low-Ca group eclogites representative of low-temperature alteration, and the high-Ca group samples representative of high-temperature hydrothermal seawater alteration. We interpret the differences between the low- and high-Ca group samples to be primarily a result of differences in the protoliths of these samples. The high-Ca group eclogites are interpreted to have protoliths similar to the mid to lower sections of an ophiolite complex. This section of oceanic crust would be dominated by rocks which have a significant cumulate component and would have experienced high-temperature seawater alteration. Such cumulate rocks probably would be LREE-depleted, and can be Ca-rich because of plagioclase or clinopyroxene accumulation. The protoliths of the low-Ca group eclogites are interpreted to be the upper section of an ophiolite complex. This section of oceanic crust would consist mainly of extrusive basalts that would have been altered by seawater at low temperatures. These basaltic lavas would probably have relatively flat REE patterns, as seen for the low-Ca group eclogites. Received: 10 July 1995 / Accepted: 17 May 1996  相似文献   

11.
Abstract: The black shales of the Lower Cambrian Niutitang Formation in Weng’an, on the Yangtze platform of south China, contain voluminous polymetallic sulfide deposits. A comprehensive geochemical investigation of trace, rare earth, and platinum group elements (PGE) has been undertaken in order to discuss its ore genesis and correlation with the tectono-depositional setting. The ore-bearing layers enrich molybdenum (Mo), nickel (Ni), vanadium (V), lead (Pb), strontium (Sr), barium (Ba) , uranium (U) , arsenic (As), and rare earth elements (REE) in abundance. High uranium/thorium (U/Th) ratios (U/Th>1) indicated that mineralization was mainly influenced by the hydrothermal process. The dU value was above 1.9, showing a reducing sedimentary condition. The REE patterns showed high enrichment in light rare earth elements (LREE) (heavy rare earth elements (HREE) (LREE/HREE=5–17), slightly negative europium (Eu) and cerium (Ce) anomalies (dEu=0.81–0.93), and positive Ce anomalies (dCe=0.76–1.12). PGE abundance was characterized by the PGE-type distribution patterns, enriching platinum (Pt), palladium (Pd), ruthenium (Ru) and osmium (Os). The Pt/Pd ratio was 0.8, which is close to the ratios of seawater and ultramafic rocks. All of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensional setting in the context of break-up of the Rodinian supercontinent.  相似文献   

12.
Peridotites in the Ulten Zone (Upper Austroalpine, Eastern Alps),occur as small bodies within lower-crustal rocks (gneisses andmigmatites) subducted at eclogite-facies conditions during theVariscan orogeny. They record a complex metamorphic and deformationevolution as indicated by the transition from coarse-grainedspinel-bearing peridotites to fine-grained garnet + amphibole-bearingperidotites, and are interpreted as portions of mantle wedgethat were incorporated in a downgoing slab of cold continentalcrust. The transition from spinel- to garnet-bearing assemblagewas accompanied by significant input of metasomatic agents,as shown by the crystallization of abundant amphibole. Herewe present trace-element mineral chemistry data for selectedUlten peridotites, with the aim of unravelling the nature ofthe metasomatic processes. Amphiboles display significant lightrare earth element (LREE) enrichment [CeN/YbN = 3·90–11·50;LREE up to (20–50) x C1], high Sr (150–250 ppm),K (1910–7280 ppm) and Ba (280–800 ppm) contents,and low concentrations of high field strength elements (HFSE)(Zr = 14–25 ppm, Y = 6·7–16 ppm, Ti = 1150–2500ppm, Nb = 2–7 ppm). On the basis of (1) the evidence formodal orthopyroxene decrease as a result of the garnet-formingreaction rather than abundant orthopyroxene crystallization,(2) the high modal amounts of amphibole (up to 23%) in the mostmetasomatized peridotites and (3) the strong large ion lithophileelement (LILE)/HFSE fractionation in amphiboles, we infer thatthe metasomatic agent was an H2O–CO2 fluid with a lowCO2/H2O ratio. Petrological investigations and geochronologicaldata indicate that the host metapelites experienced in situpartial melting and migmatization concomitantly with the garnet+ amphibole-facies recrystallization in the enclosed peridotites.We infer that the metasomatizing hydrous fluids could representthe residual fluids left after the crystallization of leucosomes,starting from water-undersaturated melts produced during migmatizationof the host gneisses. KEY WORDS: garnet peridotite; crustal metasomatism; amphibole; hydrous fluids  相似文献   

13.
Studied in this paper are the mode of occurrence, petrology, petrochemistry, Sn abundance and REE geochemistry of Sn-mineralized granitoids in the Mt. Hengduanshan Region. The results show that the concentration of Sn increases with decreasing LREE but increasing HREE in the complex plutons associated with Sn mineralization. Generally, LREE< 150ppm, HREE> 50ppm, δEu = 0.01–0.14 and symmetrically “V” -shaped curves representing the REE patterns are the important indices of Sn enrichment and mineralization. This project was finantially supported by the National Natural Science Foundation of China.  相似文献   

14.
BECKER  HARRY 《Journal of Petrology》1996,37(4):785-810
Gamet-bearing high-temperature peridotite massifs in lower Austriawere exhumed during Carboniferous plate convergence in the Bohemianmassif. The peridotite massifs contain garnet pyroxenite layers,most of which are high-pressure cumulates that crystallizedin the deep lithosphere during ascent and cooling of hot asthenosphericmelts. Many of the pyroxenites have negative Eu anomalies andhigh LREE abundances in pyroxenes and bulk rocks, 87Sr/86Sr(335 Ma) as high as 0.7089, and Nd (335 Ma) as low as –4.8(leached clinopyroxenes and garnets). These pyroxenites alsoshow strong depletions in Rb, K, Ta, P and Ti compared withthe REE Equilibrium melt compositions calculated from the cumulatecompositions have very high LREE abundances (Lan = 300–600)and show strong LREEfractionation [(La/Sm)n = 7–47)].Trace element abundances, the Ca–Al-rich composition ofthe cumulates and possible Ti saturation in the melts suggestthat these melts were of primitive carbonatitic–meliliticor lamprophyrt-like composition. Other garnet pyroxenites suchas Al-rich garnet-kyanite clinopyroxemtes with positive Eu anomaliesprobably represent metamorphosed crustal rocks which were subductedand accreted to the lithospheric mantle. The high 87Sr/86Sr,low Nd (335 Ma) and negative Eu anomalies of the high-pressurecumulates can be explained if their equilibrium melts containeda component derived from subducted upper-crustal rocks. Thehigh equilibration pressures of the host peridotites (3–3.5GPa) and the high equilibration temperatures of the pyroxenites(1100–1400C) indicate that these melts are likely tobe derived from the sub-lithospheric mantle. There, meltingmay have been triggered by small amounts of melt or fluids derivedfrom a subducting slab at greater depth. KEY WORDS: garnet pyroxenites; geochemistry; lower Austria; ultramafic massifs; subduction  相似文献   

15.
查岗诺尔大型磁铁矿床位于西天山阿吾拉勒东段,赋存于下石炭统大哈拉军山组安山岩及安山质火山碎屑岩之中,主体矿底板夹透镜状的大理岩,矿体主要为层状、似层状、透镜状。根据矿石组构和矿物共生特征,可以划分为岩浆期和热液期两个成矿期,后者包括矽卡岩和石英-硫化物两个亚成矿期,进一步可以细分为6个成矿阶段。岩浆期的磁铁矿∑REE很低,稀土配分模式大致呈轻稀土、重稀土较富集而中稀土亏损的U型,富Ti、V、Cr,表明铁质可能来自安山质岩浆的结晶分异作用; 矽卡岩亚成矿期的磁铁矿∑REE极低,略微富集LREE,其它稀土元素亏损强烈,贫Ti、V,略富集Ni、Co和Cu。矽卡岩亚期的含矿和无矿矽卡岩中的石榴石的稀土配分模式类似,∑REE含量相对较高,呈HREE富集、LREE亏损、弱正Eu异常的分布型式,显示了交代成因石榴石的特征,暗示与其共生的磁铁矿也是通过热液流体与围岩地层的交代反应生成的,铁质来自围岩。结合矿床地质与微量元素地球化学,认为查岗诺尔铁矿可能是岩浆型和矽卡岩型(主要)的复合叠加矿床。  相似文献   

16.
Inductively coupled plasma-mass spectrometry (ICP-MS) has been used to determine rare earth element concentrations in aqueous solutions extracted from fluid inclusions. Quartz has been sampled from ores of three major types of polygenic gold hydrothermal systems of North-Eastern Russia: (1) gold-quartz-sulphide (Au-Q, Nezhdaninsk); (2) gold-antimony (Au-Sb, Sarylakh) and (3) intrusion-related gold-bismuth-siderite-polysulphide (Au-Bi-Sid, Arkachan) large deposits located in terrigenous rocks of the Verkhoyansk fold belt. The total concentration of REE in the fluid inclusions is not high (up to 52 ppm). The contribution of LREE dominates in REE balance (??LREE/??HREE=7.4?C112.1). The chondrite-normalized REE patterns of inclusion fluids for the Au-Q and Au-Bi-Sid deposits are characterized by LREE enrichment with a positive or negative Eu anomaly. REE patterns for the regenerated quartz from Au-Sb deposits are characterized by pronounced differentiation between light and heavy lanthanides in fluid inclusions. Significant total REE concentration decreasing (on 1?C2 order) from early to late stages of Nezhdaninsk and Arkachan deposits is revealed. The positive correlations of total REE concentrations with Rb, Cs, Li and B contents in fluid inclusions are shown. The REE distribution in fluid inclusions can be used as indicators of the contribution of magmatic fluid in the hydrothermal system.  相似文献   

17.
A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu+2 species. Moreover, Eu+2 forms strong aqueous complexes with dissolved Cl at virtually all redox conditions. Thus, high Cl concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.  相似文献   

18.
Two-mica granites that locally contain garnet and sillimaniteoccur as dikes, sills, and sheets up to 50 m thick within thesillimanite zonc of the Monashee Mountains in the southeasternCanadian Cordillera of British Columbia. Syn-kinematic and post-kinematicgranites are recognized. U-Pb dating of zircon demonstrates that the syn-kinematic granitesare 100.4?0.3 Ma old, based on duplicate concordant single abradedzircon analyses. Other zircons have slightly older Pb/Pb dates,indicating small amounts of inherited zircons. Monazites are99?10 Ma old. Post-kinematic granites have 62.5?0.2 Ma zirconages and 634+0.1 Ma monazite ages. High initial 87 ratios (0.71492–0.74181)and evidence of Precambrian Pb inheritance indicates that bothsyn- and post-kinematic granites were derived from a crustalsource. Geobarometric estimates suggest that both generationsof granites equilibrated at 6–8 kb (22–30 km). Zirconand monazite saturation temperatures range from 660–824?Cand indicate that these minerals were liquidus phases earlyin the crystallization history of the granites. Because monazitesaturation temperatures generally exceed those of zircon, itis possible that some monazites may be inherited. Apatite saturationtemperatures in excess of 900?C suggest that both generationsof granites contain source inherited apatite. Syn- and post-kinematic granites have essentially identicalmajor and trace element chemistries. Syn-kinematic graniteshave steep light rare earth element (LREE) enriched patternswith pronounced negative Eu anomalies. The REE patterns of post-kinematicgranites range from steep LREE enriched patterns with negativeNd and Eu anomalies to flat patterns with low LREE contents,negative Nd anomalies, and both positive and negative Eu anomalies.Modelling of REE, Rb, Sr, and Ba contents demonstrates thatsyn-kinematic gramtes could have been generated by a low degreeof partial melting (with 10–25% feldspar fractionationof the melt) of Late Proterozoic Horsethief Creek Group metapelitesleaving a monazite-bearing upper amphibolite facies residue.Post-kinematic granites were produced by partial melting ofa geochemically and isotopically similar metapelitic source.The suite of post-kinematic granites can be related by a smallamount (up to 0.1%) of monazite crystal fractionation.  相似文献   

19.
新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示   总被引:16,自引:4,他引:16  
新疆富蕴县蒙库大型铁矿呈层状、似层状、透镜状赋存于下泥盆统康布铁堡组变质火山-沉积岩系中.矿体中发育矽卡岩,但矽卡岩并不产在侵入岩接触带上.绿帘石、石榴石和矿石的稀土配分模式具有相似性,均为轻稀土富集,正铕异常,基本上无铈异常,暗示它们之间存在成因联系.石榴石稀土配分模式呈折线型,具有明显的正铕异常,石榴石流体包裹体中熔融包裹体、熔流包裹体和气液包裹体共存,表明石榴石矽卡岩具有岩浆成因和热液成因的特征,形成于晶体 熔体 流体三相共存的岩浆-热液过渡阶段.矿床地质特征、矽卡岩矿物和矿石稀土特征表明蒙库铁矿为矽卡岩型矿床.  相似文献   

20.
The black shales of the Lower Cambrian Niutitang Formation in Weng'an.on the Yangtze platform of south China,contain voluminous polymetallic sulfide deposits.A comprehensive geochemical investigation of trace,rare earth,and platinum group elements(PGE)has been undertaken in order to discuss its ore genesis and correlation with the tectono.depositional setting.The ore-bearing layers enrich molybdenum(Mo),nickeI(Ni),vanadium(V),lead(Pb),strontium(Sr), bariam(Ba),uranium(U),arsenic(As),and rare earth elements(REE)in abundance.High uranium/thorium(U/Th)ratios(U/Th>1)indicated that mineralization was mainly influenced by the hydrothermal process.The δU value Was above 1.9.showing a reducing sedimentary condition.The REE patterns showed high enrichment in Iight rare earth elements (LREE)(heavy rare earth elements (HREE)(LREE/HREE=5-17),slightly negative europium(EU)and cerium(Ce)anomalies(δEu=0.81-0.93).and positive Ce anomalies(δCe=0.76-1.12).PGE abundance was characterized by the PGE-type distribution patterns,enriching platinum(Pt),palladium(Pd),ruthenium(RuJ and osmium(Os).The Pt,Pd ratio was 0.8.which is close to the ratios of seawater and ultramafic rocks.AII of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensionai setting in the context of break-up of the Rodinian supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号