首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Benthic macroalgae form an important part of temperate marine ecosystems, exhibiting a complex three-dimensional character which represents a vital foraging and spawning ground for many juvenile fish species. In this research, image-based techniques for classification of multibeam backscatter are explored for the detection of benthic macroalgae at Cashes Ledge in the Gulf of Maine, USA. Two classifications were performed using QTC-Multiview, differentiated by application of a threshold filter, and macroalgal signatures were independently extracted from the raw sonar datagrams in Matlab. All classifications were validated by comparison with video ground-truth data. The unfiltered classification shows a high degree of complexity in the shallowest areas within the study site; the filtered demonstrates markedly less variation by depth. The unfiltered classification shows a positive agreement with the video ground-truth data; 82.6% of observations recording Laminaria sp., 39.1% of Agarum cribrosum and 100.0% (n = 3) of mixed macroalgae occur within the same acoustically distinct group of classes. These are discrete from the 8.1% recorded agreement with absences and nulls (>40 m) of macrophytes (n = 32) from a total of 86 ground-truth locations. The results of the water column data extraction (WCDE) show similar success, accurately predicting 78.3% of Laminaria sp. and 30.4% of A. cribrosum observations.  相似文献   

2.
Anthropogenically induced changes to estuaries, including shifts from seagrass to macroalgae-dominated habitats, have led to concerns about the ability of estuaries to support fish and invertebrates. To assess differences in habitat quality of seagrass and macroalgae, we examined faunal community structure and consumer carbon assimilation in adjacent areas of seagrass, macroalgae, and bare sediments in Sage Lot Pond, Waquoit Bay, MA. Vegetation was an important factor controlling abundances, and both seagrass and macroalgae provided suitable habitat for a range of benthic fauna. Differences in consumption and assimilation of carbon of seagrass and macroalgal origin were demonstrated by shifts in δ13C values of consumers between the seagrass meadow and adjacent macroalgal mats. Overall, consumers generally reflected incorporation of carbon from the dominant producers in the habitat where they were collected although macroalgae was an important carbon source for organisms in this study. These results revealed differences in carbon flow from producers to consumers across very small spatial scales (<10 m) within an estuary.  相似文献   

3.
The eelgrass Zostera marina is a key structural and functional species across the European coastline. The separate and interactive effects of eelgrass canopy removal and sediment addition on the sediment characteristics and the structure of benthic communities were studied in a factorial field experiment in the Northern Baltic Sea in July–August 2006. The removal of eelgrass canopy temporarily increased the sediment oxygen consumption, reduced the content of fine particles (<100 μm) and organic matter in the sediment, and increased the share of sand fraction (250–500 μm). Sediment addition increased the content of fine particles (<100 μm) and reduced the share of sand fraction (250–1000 μm). The effects were strongest in the presence of eelgrass canopy. Benthic invertebrates and macroalgae were affected by eelgrass canopy removal but not by sediment addition. The removal of eelgrass canopy significantly decreased benthic species richness and invertebrate and macroalgal densities. To conclude, our experiment demonstrates that Z. marina defines the patterns of benthic macroalgae and invertebrates but has moderate effects on sediment structure and metabolism in the Northern Baltic Sea.  相似文献   

4.
Intertidal benthic macroalgae are a biological quality indicator in estuaries and coasts. While remote sensing has been applied to quantify the spatial distribution of such macroalgae, it is generally not used for their monitoring. We examined the day-to-day and seasonal dynamics of macroalgal cover on a sandy intertidal flat using visible and near-infrared images from a time-lapse camera mounted on a tower. Benthic algae were identified using supervised, semi-supervised and unsupervised classification techniques, validated with monthly ground-truthing over one year. A supervised classification (based on maximum likelihood, using training areas identified in the field) performed best in discriminating between sediment, benthic diatom films and macroalgae, with highest spectral separability between macroalgae and diatoms in spring/summer. An automated unsupervised classification (based on the Normalised Differential Vegetation Index NDVI) allowed detection of daily changes in macroalgal coverage without the need for calibration. This method showed a bloom of macroalgae (filamentous green algae, Ulva sp.) in summer with > 60% cover, but with pronounced superimposed day-to-day variation in cover. Waves were a major factor in regulating macroalgal cover, but regrowth of the thalli after a summer storm was fast (2 weeks). Images and in situ data demonstrated that the protruding tubes of the polychaete Lanice conchilega facilitated both settlement (anchorage) and survival (resistance to waves) of the macroalgae. Thus, high-frequency, high resolution images revealed the mechanisms for regulating the dynamics in cover of the macroalgae and for their spatial structuring. Ramifications for the mode, timing, frequency and evaluation of monitoring macroalgae by field and remote sensing surveys are discussed.  相似文献   

5.
苏北浅滩是研究浒苔绿潮早期形成机制的重要区域,该区域紫菜养殖筏架上附生绿藻的群落结构变化对浒苔绿潮的发生具有重要影响,环境因素在其中发挥了重要作用.为了探明导致苏北浅滩绿藻群落结构变化的主要环境因素,本文通过分子生物学和种群生态学方法对筏架附生绿藻群落结构进行了研究,结果表明:(1)苏北浅滩筏架附生绿藻群落主要由浒苔(...  相似文献   

6.
Small grazing motile epifaunal invertebrates play an important ecosystem role on coral reefs, influencing both the abundance and composition of macroalgal communities and acting as a key food source for a range of predatory fishes. The first aim of this study was to investigate the associations between motile epifaunal communities and four common macroalgal species (Lobophora variegata, Dictyota divaricata, Microdictyon marinum and Halimeda opuntia) on fore‐reef environments in the Exuma Cays (Bahamas, wider Caribbean). Secondly, we investigated the implications of the well documented rise of Caribbean macroalgal cover on invertebrate densities by surveying sites inside and outside the Exuma Cays Land and Sea Park (ECLSP), where increases in parrotfish grazing intensity inside the marine reserves have led to reductions in macroalgal cover. Therefore, surveys compared similar reefs with significantly different macrolagal cover. Comparisons between macroalgal species revealed a four to fivefold difference in motile epifaunal densities per unit volume of macroalgae. Post‐hoc tests revealed that this difference was significant only for Lobophora, with no difference observed among the other species. As macroalgae provide both a refuge from predation and a food source for grazing epifauna, the higher densities of epifauna observed in Lobophora may be attributed to either refuge from visual predators through morphological features (high cover of overlapping blades close to the substrate) or lack of palatability for parrotfish grazing, providing a more stable refuge. Our results revealed no significant differences in diversity, density or community structure of motile epifauna per unit volume of macroalgae between sites inside and outside the ECLSP. Since canopy height and invertivore biomass did not vary systematically across reserve boundaries, this suggests that algal cover does not affect the density of epifaunal invertebrates. However, areal cover was consistently higher for all macroalgal species at sites outside the ECLSP than those inside the reserve. Therefore, when scaled by aerial cover of macroalgae, total abundance of epifauna was twofold higher outside the ECLSP. We suggest that the increasing abundance of macroalgae on Caribbean reefs may be having dramatic effects on epifaunal invertebrate populations and potentially their ecological functions.  相似文献   

7.
The Water Framework and Habitats Directives require the evaluation of both the conservation and ecological status of macroalgae communities at water body or habitat level. However, assessments of macroalgal communities are highly time-consuming, both in terms of sampling effort and laboratory processing. These constraints have brought about their oversight in many marine monitoring programs, especially in subtidal environments. By using data from intertidal and subtidal macroalgae assemblages of Mouro Island (North coast of Spain) we wanted to identify possible cost-effective methods for monitoring this biological indicator, based on both high taxa levels and use of representative taxa. Multivariate analyses were applied using different data transformations. The results show that macroalgal communities are robust to aggregation to genus or even family level. Moreover, the outcomes show that transformation types introduce higher variation in the multivariate pattern of samples than the taxonomic level to which organisms are identified. Also, the study supports the use of representative taxa as a surrogate to overall community structure. Therefore, we conclude that a rapid-assessment by means of field evaluations, based on coverage of representative taxa, is a reliable alternative for the assessment of macroalgae status. In addition this procedure allows evaluation at a broader spatial scale (water body or habitat level) than traditional quantitative sampling procedure does.  相似文献   

8.
Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (∼1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (±0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km2 of reef flat (54 g m−2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments.  相似文献   

9.
《Journal of Sea Research》2010,63(4):276-285
A decrease in the areas covered by seagrasses within the Ria de Aveiro, Portugal, has been observed over the past five decades, resulting in a corresponding increase of the areas of uncovered sediment supporting the growth of sparse macroalgae populations only. Presently, several macroalgae (Ulva spp., Gracilaria sp.) and one seagrass species (Nanozostera noltii (Hornem.) Toml. & Posl.) comprise the submerged aquatic vegetation (SAV) adapted to this shallow, high-energy environment, characterised by fast tidal currents and turbid waters and in which large areas of the bed are exposed during low tide. This study shows that there is a strong inter-relation between the SAV and the surface sediment in intertidal areas. The sediment covered by N. noltii was finer (median grain size 95 µm) and had a high percentage of organic matter (mean value 7.6%), compared with the sediment colonised by macroalgae (median grain size 239 µm; mean organic content 3.2%). The concentrations of both total nitrogen and phosphorous were significantly greater (P < 0.001) in surface sediments covered by N. noltii. Thus, sediments within N. noltii appear to act as a large reservoir of N and P by accumulating greater concentrations of fine sediment particles (silt and clay) and organic matter when compared with the coarser sediment covered with macroalgae only. Hence, the reduction in the area covered by seagrasses will likely result in a gradual loss of nutrients and fine sediment from the Ria de Aveiro channels.  相似文献   

10.
The importance of suspension-feeding mussels is particularly apparent in benthic communities; however, the role of this feeding strategy on the development of macroalgal and associated invertebrate communities is in general poorly known. The effect of suspension-feeding mussels Mytilus trossulus on benthic communities was studied in an in situ factorial field experiment in the Northern Baltic Sea over one ice-free season. The experiment was performed under different regimes of wave exposure (low and moderate) and on different sedimentary habitats (soft bottom with high organic content, soft bottom with low organic content, and hard bottom). In general the presence of mussels was associated with increased biomass of filamentous algae, herbivores and deposit feeders and decreased biomass of charophytes. The effect of M. trossulus interacted with the effect of exposure and substrate. Stronger responses were observed in moderately exposed than in sheltered areas. The presence of M. trossulus affected charophytes and deposit feeders on sand with low content of organic matter and filamentous algae on pebbles but not on other substrate types. The magnitude of the effects varied between months. The results suggest that (i) even in dynamic coastal systems the biodeposits and excretions of mussels are at least partly assimilated locally and are not flushed away to the open sea, (ii) the accumulation of faecal material induced elevated growth of deposit feeders, (iii) mussels enhanced the growth of ephemeral macroalgae and reduced the growth of perennial macroalgae, and (iv) together with increasing benthic primary production, mussels indirectly increase the production of herbivores.  相似文献   

11.
Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator–prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.  相似文献   

12.
Late Quaternary shallow biogenic gas reservoirs have been discovered and exploited in the Qiantang River (QR) estuary area, eastern China. The fall of global sea level during the Last Glacial Maximum resulted in the formation of the QR incised valley. From bottom to top, the incised valley successions can be grouped into four sedimentary facies: river channel facies, floodplain–estuarine facies, estuarine-shallow marine facies, and estuarine sand bar facies.All commercial biogenic gas pools occur in floodplain–estuarine sand bodies of the QR incised valley and its branches. The deeply incised valleys provided favorable conditions for the generation and accumulation of shallow biogenic gas.The clay beds that serve as the direct cap beds of the gas pools are mostly restricted within the QR incised valley, with burial depths ranging from 30 to 80 m, remnant thicknesses of 10–30 m, and porosities of 42.2–62.6%. In contrast, the mud beds cover the whole incised valley and occur as indirect cap beds, with burial depths varying from 5 to 35 m, thicknesses of 10–20 m, and porosities of 50.6–53.9%. The pore-water pressures of clay and mud beds are higher than that of sand bodies, and the difference can be as much as 0.48 MPa. The pore-water pressures of clay or mud beds can exceed the total pore-water pressure and gas pressure of underlying sand reservoirs. Shallow biogenic gas can be completely sealed by the clay and mud beds, which have higher pore-water pressure. The direct cap beds have better sealing ability than the indirect cap beds.Generally, the pore-water pressure dissipation time of clay and mud beds is conspicuously longer than that of sand beds. This indicates that the clay and mud beds have worse permeability and better sealing ability than the sand beds. However, once the gas enters the sand lenses, the pore-water pressure cannot release efficiently.  相似文献   

13.
Spatial and temporal variation in tropical inter‐tidal communities is poorly known, making predictions about the effects of climate change and other anthropogenic disturbances difficult. Along Southwest O‘ahu, Hawai'i, local residents are concerned about the environmental effects of coastal development and the perceived loss of targeted algal species, which are collected for human consumption. To describe the coastal benthic community and better understand the processes that form and maintain it, the abundance and composition of macroalgae were sampled in the region's inter‐tidal zone from 2006 to 2015. Sixty‐six macroalgal species and two broad algal assemblages were identified that corresponded to substrate topography and sand influence at a similar tidal elevation. Along flat carbonate benches with a sand beach, Phaeophyceae and Rhodophytes occurred in almost equal proportions, while shores with slightly more topographic relief and angular substrate were dominated by Rhodophytes. Foliose or turf algal forms were most common. Surveys captured the local invasion of an alga, Avrainvillea sp. and significant declines in abundant macroalgae in 2015 after a period of unseasonably warm, calm water. Temporal changes in algal assemblages were related to maximum water temperature and wave height but not precipitation. Thus, algal assemblages appear to be structured by local beach morphology as they interact with sand and wave activity and episodically by unusual weather events. However, manipulation and continuous monitoring of the algal assemblages coupled to sensing of the localized environment is necessary to confirm factors related to assembly maintenance and recent species shifts.  相似文献   

14.
Diadema aff. antillarum performs a key role in organizing and structuring rocky macroalgae assemblages in the Canary Islands. Densities of D. aff. antillarum higher than 2 individuals m(-2) are found to drastically reduce non-crustose macroalgal cover to below 30% and wave exposure appears as a major factor determining sea urchin density, which decreases with exposure level. Substrates containing >20% sand limit urchin to under 1 individual m(-2) but high relief rocky habitats show higher density. Moreover, several anthropogenic factors (number of islanders and tourists per coastal perimeter, and number of operational fishing boats) were positively correlated with urchin abundance. A trend of increasing urchin density through time was found, although well structured marine systems found at Mar de Las Calmas Marine Protected Area and at the no-take area of La Graciosa Marine Protected Area do not seem to follow this general trend.  相似文献   

15.
Eutrophication is known to affect the community structure of macroalgae by e.g. decreasing the depth penetration of species and by shifting dominance from perennial to annual species. However, there is substantial lack of knowledge in the Baltic Sea regarding the distribution of many of the macroalgal species, how natural environmental factors affect their occurrence and how they respond to eutrophication. As macroalgae are used as indicators of the quality of the sea areas in the EU legislation (Water Framework Directive, Marine Strategy Framework Directive), this kind of knowledge is essential. The aim of this study was to determine which variables were related to variation in species occurrence and their lower limit of occurrence in the Finnish marine area. The study was carried out on data from five study areas along the Finnish coastline and included about 30 taxa. Our results showed that both the macroalgal communities and the occurrence (presence/absence) of most of the species differed between the study areas and that the differences were mainly related to salinity and exposure, although also eutrophication related factors played a role. Of the perennial species, eutrophied conditions seemed to favour only the occurrence of Sphacelaria arctica and Polysiphonia fucoides. Secchi depth was important in determining the lower limit of occurrence of brown and red algal species. However, Secchi depth was rarely the only factor causing variation in the lower limit of occurrence as also exposure, salinity and slope of the shore affected it. We conclude that in the northern Baltic Sea, the taxonomic composition of the macroalgal communities is not a very useful indicator of eutrophication as perennial species seem to tolerate rather eutrophied conditions, when suitable substrate is available. The lower limit of occurrence of many of the brown and red algal species is a good indicator of eutrophication but due to lack of suitable substrate in more eutrophied areas, especially in the depths where light becomes limiting, it is only applicable in the middle and outer archipelago areas. Furthermore, when planning monitoring programmes or setting thresholds for evaluating the ecological status of the sea, the natural variation in the lower limit of occurrence of macroalgae across sea areas is problematic and should carefully be taken into account.  相似文献   

16.
Rapa (27°36′ S, 144°20′ W) is a small (~40 km2) volcanic island isolated in the Southern Austral Archipelago, where direct anthropogenic stressors are extremely limited. Here, we present the results of the first quantitative survey of coral community structure across habitats and depths around the island. Despite its geographical isolation in the depauperate South Central Pacific, its small size and unfavourable environmental conditions (competition with macroalgae, low sea surface temperatures, reduced reef accretion), the diversity of scleractinian corals at Rapa is particularly high (112 species from 32 genera, including 37 species of Acropora) in comparison to other French Polynesian islands and subtropical Pacific locations. Our results indicate that the abundance (>100 colonies per 10 m2 recorded at nine of the 17 sampling stations) and cover (>40% at four stations) of corals are relatively high for a marginal reef location. Strong spatial heterogeneity was found, with high variation in diversity, abundance, cover and community composition among stations. Variation in community composition was related to habitat types, with distinct assemblages among fringing reefs within bays, reef formations at bay entrances, and those on the submerged platform surrounding the island. On the platform, a depth gradient was detected, with generic richness, abundance and cover generally greater at deeper stations (18–20 m depth) compared with medium‐depth (10–12 m) and shallow (1–3 m) stations. A gradient was also recorded along bays, with increasing coral diversity and abundance from the bay heads to the bay entrances. The coral community at Rapa was characterized by the presence of several taxa not found in other French Polynesian archipelagos and the rarity of others that are common and abundant in the Society and the Tuamotu islands. Another distinctive feature of reef communities at Rapa is the high cover and dominance of macroalgae, particularly in the shallower parts of the surrounding platform, which probably explains the lower densities of coral colonies recorded there. These characteristics of the diversity and biogeographical composition of coral assemblages at Rapa provide considerable ecological grounds for its conservation.  相似文献   

17.
The effect of test panel submersion season on the colonization of biofouling communities in a tropical coast revealed that the effects of panel submersion time should be taken into consideration for modelling fouling community recruitment dynamics in coastal systems or during the field trials of antifouling coatings. Wooden test panels fitted onto a raft were submerged during pre-monsoon, monsoon and post-monsoon seasons for the development of the biofouling community. Results showed considerable variation in the colonization of fouling communities on test panels submerged during different seasons. Barnacles, tubeworms, ascidians and seaweeds were the major fouling communities that colonized the test panels. The total biomass of the fouling communities that settled on the post-monsoon season panels varied from the initial value of 2.72 g dm−2 to a maximum of 44.5 g dm−2. On the panels submerged during monsoon season, the total biomass of fouling communities varied between 0.78 g dm−2 and 69.9 g dm−2. The total fouling biomass on the pre-monsoon season panels varied between 2.95 and 33.5 g dm−2. Barnacles were the initial colonizers on the panels submerged during pre-monsoon and post-monsoon seasons. Soft-bodied organisms such as ascidians dominated the monsoon season-initiated panel series during the initial period.  相似文献   

18.
《Journal of Sea Research》2008,59(4):335-341
Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator–prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.  相似文献   

19.
山东半岛东端以岩基海岸为主,而浅海多为岩礁底质,适宜大型藻类生长。为探究该海域的大型藻类群落结构特征,于2018年11月(秋)、2019年2月(冬)、5月(春)和8月(夏)对山东荣成马山里海域的三个典型生境(草床区、天然礁区和泥沙区)中的大型藻类进行了调查。结果显示:三种生境共鉴定出大型藻类23种,其中红藻门15属15种,褐藻门3属4种,绿藻门3属4种。物种数最高值出现在天然礁区(22种),最低值出现在泥沙区(12种)。生物量最高值为春季草床区(1567.44±21.29)g.m-2、最低值为秋季的泥沙区(594.45±107.06)g.m-2。大型藻类优势种在不同生境、不同季节不同:草床生境为小珊瑚藻,在四个季节中均占绝对优势;礁区为绿藻向红藻、褐藻变化;泥沙区为从红藻到褐藻变化。Pielow均匀度指数的最高值在三个生境中相近且均出现在冬季;多样性指数最高值、最低值分别出现在礁区与泥沙区;Margalef丰富度指数的最高值出现在秋季的礁区,而最低值出现在夏季的泥沙区;聚类与排序结果表明,大型藻类群落结构在不同生境不同季节差异都显著。结果表明,生境特征和季节性变化是影响底栖大型海藻群落结构的主要因素。  相似文献   

20.
The distribution and biomass of macroalgae, principally Enteromorpha spp., have been estimated in Langstone Harbour, a 19 km2 tidal basin in southenrn England. Comprehensive mapping was carried out annually at the time of maximum biomass and monthly mapping of selected areas allowed seasonal changes to be studied. Aerial false-colour photography and ground-level mapping were used for assessing the area and density of cover of macroalgae, but have identified no continuous trends between 1973 and 1982. In nine years, some 48% of the intertidal mudflat has supported >75% macroalgal cover at some stage, but generally only one-third of this potential has been achieved annually. The average peak biomass was determined by a stratified sampling method and varied about a mean of 38.5 g dry weight per square metre and showed significant annual differences. The processes controlling macroalgal growth and distribution reviewed, but, in general, factors other than nutrient availability are effective in determining areas supporting high macroalgal cover in any particular year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号