首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
利用常熟地震台同场地观测的洞体应变仪、体应变仪、水管倾斜仪、垂直摆倾斜仪记录数据,采用小波变换与功率谱密度估计方法,检测2011年3月11日日本9.0级大地震激发的地球自由振荡信号,其中检测到47个球型基频振型(0S30S49)、15个环型基频振型(0T5—0T25)以及部分球型谐频振型,与地球初步参考模型(PREM)理论频率值基本符合,表明检测结果较好。对比结果显示:水管倾斜仪检测球型振荡振型能力最强,垂直摆倾斜仪检测环型振荡振型能力最强;体应变仪可检测到清晰的环型基频振型,且信噪比较高;倾斜仪对自由振荡信号的检测能力优于应变仪。  相似文献   

2.
利用不同倾斜仪和应变仪检测地球自由振荡的对比与分析   总被引:1,自引:1,他引:0  
孟方杰  张燕 《中国地震》2018,34(1):133-140
中国地震局地壳形变观测台网布设有垂直摆倾斜仪、钻孔倾斜仪、洞体应变仪、分量式钻孔应变仪与体应变仪等地形变观测仪器。这些观测仪器均记录到了2011年日本M_W9.0大地震激发的自由振荡信号。本文分别利用单台数据和多台数据叠积,检测到_0S_3~_0S_(30)全部的球型自由振荡基频振型和_0T_3~_0T_(20)全部的环型自由振荡基频振型及部分谐频振型。此外,通过对这些检测结果的对比,分析了它们对不同自由振荡类型、不同频段的振型检测能力。分析发现垂直摆倾斜仪对球型自由振荡的检测结果最佳,且由于在低频段有较高的噪声干扰,钻孔倾斜仪无法检测到低阶的球型自由振荡。对于环型自由振荡的检测,分量式钻孔应变仪检测结果最佳。  相似文献   

3.
汶川大地震激发的地球球型自由振荡   总被引:4,自引:1,他引:3  
用垂直摆倾斜仪和水管倾斜仪的数字化观测资料,利用功率谱密度估计方法,在没有对资料进行去固体潮处理的情况下,准确获得了2008年5月12日汶川8.0级大地震激发的0S6~0S32基频球型自由振荡.并与PREM模型的理论自由振荡周期进行了对比,发现实测振荡周期与PREM预测的振荡周期相吻合,除0S7振型的观测周期和PREM模型理论周期的相对误差大于0.3%外,其他振型的观测周期和PREM模型理论周期的相对误差大都集中在0.1%左右.可以从垂直摆倾斜仪和水管倾斜仪的观测资料中提取汶川地震激发的地球球型振荡信息,这为地球自由振荡的研究提供了一种新的仪器观测方法.用数字化地倾斜观测资料研究地球自由振荡问题或许有着较好的前景.  相似文献   

4.
我们率先用钻孔应变仪观测资料研究了地球自由振荡. 泰安地震台有差应变和体应变两种钻孔应变观测仪器,都观测到2004年12月26日苏门答腊大地震激发的地球自由振荡. 体应变仪观测到地球的球型振荡,而差应变仪观测到地球的环型振荡. 两种观测还记录到环型振荡与球型振荡相互的耦合作用. 观测也记录到明显的一些振型的谱线分裂现象. 用直接观测到的高质量的环型振荡资料求解了0T8~0T19等主要振型的Q值. 根据两个方向的剪应变观测数据,求解了环型振荡的最大剪应变方向,发现这个方向是相当稳定的. 这种研究表明,高精度钻孔应变观测仪是一种理想的地壳形变观测仪器,可以为地球自由振荡研究提供更丰富的信息.  相似文献   

5.
利用怀来地震台水管仪的数字化观测资料,采用功率谱密度估计方法,在没有对资料去固体潮处理的情况下,准确获得2004年12月26日苏门答腊9.0级地震激发的_0S_2—_0S_(38)基频球型自由振荡,并与PREM模型的理论自由振荡周期进行对比,发现实测振荡周期与PREM预测的振荡周期吻合,除_0S_2、_0S_4、_0S_7振型的观测周期和PREM模型理论周期的相对误差大于0.3%外,其他振型的观测周期和PREM模型理论周期的相对误差大都集中在0.1%左右,同时检测到7个谐频球型振荡和10个环型振荡。可以从水管倾斜仪的观测资料中提取地球球型振荡信息,为地球自由振荡的研究提供一种新的仪器观测方法。  相似文献   

6.
JCZ-1T地震计LP通道数据可有效应用于地球自由振荡信号探测。利用泰安基准地震台JCZ-1T地震计LP通道120小时数据记录,获得2018年8月19日斐济MW 8.2深源地震激发的地球自由振荡,检测到基频球型振荡0S6-0S58几乎所有振型、球型振荡部分零级振型和高振型以及环形振荡部分基振型和高振型,与地球初步参考模型(PREM)的理论自由振荡周期进行对比,结果表明,振荡周期观测值与PREM理论值基本一致,二者微小差值应由地球介质的横向不均匀性和各向异性所致。  相似文献   

7.
用本溪自流井数字化水温观测资料,采用直接计算功率谱密度的方式对印尼苏门答腊9.0级大地震激发的球型自由振荡进行了提取,准确检测到了0S2~0S9低频基型球型振荡,并且还检测到了2个谐频球型振荡:1S2、1S3。用该井数字化水温观测资料提取了0S2、0S3、0S4共3个振型的分裂,虽然3个振型均只得到2个单峰,但地球自由振荡谱线分裂现象的检测为研究地球的深内部结构提供了新的、不同类型的观测资料。研究表明,用本溪自流井数字化水温观测资料可以提取到苏门答腊大地震激发的地球球型振荡,这就为地球自由振荡的研究提供了一种新的观测手段。  相似文献   

8.
利用常熟地震台水管倾斜仪的数字化观测资料,采用功率谱密度估计方法,在没有对资料进行去除固体潮处理的情况下,获得了2011年3月11日日本9.0级大地震激发的0S6~0S30基频球型自由振荡,并与地球初步参考模型(PREM)的理论自由振荡频率进行了对比,发现实测振荡频率与PREM预测的振荡频率基本符合。  相似文献   

9.
利用超导重力仪观测数据精确测定低于1 mHz的地球自由振荡简正模式的分裂频率,是在不与任何弹性系数发生联系的情况下改善一维密度模型的有效方法.但在该频段台站局部气压变化对重力观测数据的影响成为主要干扰来源,且具有频率依赖特性,因此精细地开展气压改正成为利用超导重力数据检测低频自由振荡信号的必要手段.本文基于EEMD方法,提出了一种具有频率依赖特性的气压改正方法.该方法将重力观测和气压变化分解成处于不同频段的本征模态函数,并在相应频段上分别进行重力-气压变化的回归分析,计算得到具有频率依赖特性的气压导纳值,精细地消除气压变化对重力观测的影响,并以此对微弱低频地球自由振荡信号开展高分辨率分析.基于本文提出的气压改正方法,利用大地震后的超导重力数据检测了频率小于1.5 mHz的低频地球自由振荡及其频谱分裂现象.研究结果表明:利用该方法进行气压改正后检测得到的各简正模具有更高的信噪比,估计的本征频率误差水平明显降低,获得的基频球型振荡0S20S3以及一阶球型振荡1S2的分裂谱峰的估计精度更高,同时还检测到了部分环型振荡在重力观测中的耦合现象.对低频地球振荡的高分辨率检测结果验证了基于EEMD分解提出的气压改正方法的有效性,同时再次证明了超导重力仪观测数据在低频地球自由振荡检测中的优势.  相似文献   

10.
本文利用张家口台宽频带倾斜仪的数字化观测资料,采用功率谱密度估计方法,在没有对资料进行去固体潮处理的情况下,准确获得了2011年3月11日日本9.0级大地震激发的oS2~oS35,基频球型自由振荡,并与地球初步参考模型(PREM)的理论自由振荡频率进行了对比,发现实测振荡频率与PREM预测的振荡频率基本符合。宽频带倾斜仪的数字化观测资料的确可以提取到日本地震激发的地球自由振荡。  相似文献   

11.
许闯  钟波  罗志才  李琼 《地球物理学报》2014,57(10):3103-3116
准确估计低频自由振荡及谱线分裂是约束地球内部结构和改进地球模型的重要手段.本文利用四个不同台站的超导重力观测数据系统研究了日本Mw9.0大地震激发的低于1.5 mHz自由振荡及谱线分裂.研究结果表明:(1)选取适当的数据长度,超导重力观测数据可以检测出低于1.5 mHz除1S1以外的所有自由振荡;(2)除0S20S30S02S13S11S20T2外,重点探测出3S20S41S4谱线分裂的所有谱峰;(3)与PREM模型理论频率相比,0S0观测频率平均向右偏移0.354×10-3mHz,说明PREM理论模型中地幔底部参数与真实地球可能存在微小偏差;(4)3S2的谱线分裂率r为1.485267,比PREM理论谱线分裂宽度约宽50%,表明PREM中地球内核中部介质参数可能存在一定误差,需要进一步改善.另外,quasi-0T2的r为1.254206,比PREM理论谱线分裂宽度约宽25%.  相似文献   

12.
程威  胡小刚 《地球物理学报》2018,61(8):3211-3218
2012年发生的苏门答腊大地震激起了强烈的环形地球自由振荡,本文利用南极26个地震台站记录的此次大地震激发的0T10简正模,分析南极上地幔结构异常对长周期自由振荡的影响,我们将震后20 h的自由振荡观测数据与利用PREM地球模型模拟的结果进行比较,结果表明:在震后较短时间内区域性(区域的范围远远小于简正模的波长)上地幔结构异常能显著影响长周期自由振荡质点的偏振,引起简正模强烈的偏振异常.以往研究主要关注地球自转和全球范围的上地幔结构异常对长周期自由振荡简正模的影响,局部范围的上地幔结构异常对长周期自由振荡的影响并未被重视.对南极地区0T10垂向偏振异常的进一步分析表明:南极大陆上地幔存在方位各向异性,上地幔各向异性主要分布在横贯南极山脉下方,深度范围约为70~660 km.利用震后较短时间内的长周期地球自由振荡观测资料可以对局部区域上地幔的各向异性及其深度范围提供约束,可作为剪切波分裂和面波层析成像技术的补充.  相似文献   

13.
在保证低频自由振荡信号分辨率,又不对高频自由振荡信号产生抑制效应的前提下,利用张家口地震台体应变观测资料,采用功率谱密度估计方法,获得2011年3月11日日本9.0级大地震激发的0S2-0S74基频球型振荡和17个谐频球型振荡(3S25S32S102S123S911S17S105S134S185S1414S44S241S387S1814S89S195S30),并与地球初步参考模型(PREM)的理论自由振荡周期进行对比,发现与实测振荡周期基本一致。  相似文献   

14.
选用通河地震台体应变观测数据,采用功率谱密度估计方法,获得2015年5月30日日本小笠原群岛地区8.0级大地震和2017年9月8日墨西哥沿岸近海8.2级大地震激发的_0S_4—_0S_(35)基频球型自由振荡频率,并与地球初步参考模型(PREM)的理论自由振荡频率进行对比,结果发现:前者共被检测到11个基频信号,有7个信号与理论值存在偏差,1个存在频谱分裂现象;后者共被检测到17个基频信号,有9个信号与理论值存在偏差,1个存在频谱分裂现象。  相似文献   

15.
丁浩  申文斌 《地球物理学报》2013,56(10):3313-3323
完全剥离一阶模态nS1的三重分裂信号将有助于识别出其全部分裂谱线,进而更好地约束地球内部结构.理想情况下,球谐叠加法(SHS)与多台站实验技术(MSE)均可剥离一阶模态nS1的三重分裂信号,但部分学者持不同观点.本文基于对二者的理论分析进一步确认,在自耦合前提下,MSE方法可成功剥离nS1的三重分裂信号;而SHS方法在实际应用中无法成功剥离nS1的三重分裂信号,但可相对增强目标信号的振幅强度.此外,本文解释了MSE可剥离单线态信号的真实原因,并指出由于MSE未考虑全频段耦合影响,故仅适用于1 mHz以下的低频模态.鉴于超导重力(SG)数据在1 mHz以下比宽频地震数据具有更高的信噪比,因此,为验证本文结论并弄清MSE和SHS的实质,基于模拟数据及SG台站实测数据,本文利用MSE和SHS分别对一阶模态的合成信号及模态3S1进行了探测分析.实验结果表明,MSE可成功剥离一阶模态三重分裂信号,SHS则无法完全剥离,验证了我们的理论结论,表明前人部分结果需重新审视与评价.此外,本文基于三种不同方法并利用13个SG 台站数据给出的3S1的分裂宽度比分别为1.008, 1.000和1.001,远小于异常分裂判别临界值1.5, 因此,3S1应是正常分裂模态.  相似文献   

16.
利用重力观测约束2011日本Tohoku大地震的震源机制   总被引:3,自引:2,他引:1       下载免费PDF全文
2011年3月11日,日本东北部(Tohoku)太平洋海域发生Mw9.0特大地震.一些国际学术机构用不同的震相和反演方法,计算了大地震的震源机制解.但这些结果存在一定的差异.地球长周期自由振荡的振幅主要依赖于地震矩的大小及地震断层的破裂方式,可以约束地震的震源机制、地震大小及持续时间.本文利用地球自由振荡0S0简正模对Tohoku大地震的震源机制解进行分析和约束.0S0振幅大小与地震断层的倾角(dip)、滑动方向角(slip)、震源深度及地震断层的破裂时间有关.我们利用震源机制解得到大地震后自由振荡模拟值,利用超导重力仪得到自由振荡的高精度重力观测值.二者比较后的结果显示:由GCMT震源机制解得到的0S0振幅与观测值符合较好,而由USGS CMT震源机制解模拟的结果明显大于观测值.2011 Tohoku地震为逆冲型浅源大地震.进一步的分析表明:逆冲型浅源大地震的断层倾角对0S0振幅的影响很大,而滑动方向角以及震源深度对0S0振幅的影响较小.USGS CMT震源机制解中较大的断层倾角是导致其0S0振幅显著偏离观测值的主要原因.  相似文献   

17.
印度洋9.0级大地震激发的地球球型振荡和环型振荡   总被引:5,自引:4,他引:1       下载免费PDF全文
综合分析了中国数字地震台网(CDSN)改造后的5个长周期地震仪台站观测的3天的VHZ、VHE和VHN波形资料,利用功率谱密度估计方法,在没有对资料进行去固体潮处理的情况下,准确获得了2004年12月26日印度洋地震激发的0S3~0S78的基频球型振荡和部分谐频球型振荡和0T3~0T67的基频环型振荡,并与地球初步参考模型(PREM)的理论自由振荡周期进行了对比,发现实测振荡周期与PREM预测的振荡周期符合的很好.频率与PREM模型略微不一致的球型或环型振荡可以解释为地球介质的横向不均匀性和各向异性所致.因此地球自由振荡信息可用于揭示地球的三维不均匀结构信息或各向异性信息,并可能对区分地幔对流模式有所帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号