首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Shizishan copper-gold deposit at Tongling, Anhui Province consists of two magmato-hydrothermal mineralization types: the crypto-explosive breccia type and the skarn type. At least four episodes of boiling occurred to the ore-forming fluids in this deposit. The first episode took place in accompany with the formation of the crypto-explosive breccias. The melt-fluid inclusions giving temperatures above 600℃ and salinities higher than 42% NaCl equiv represent a residual magma related to this episode. The second episode occurred during skarnization, giving fluid temperatures of 422℃-472℃, averaging 458℃, and salinities of 10.2%-45.1% NaCl equiv. The third episode corresponds to the main mineralization stage, i.e., the quartz-sulphide stage. Fluid temperatures of this episode vary in a range of 337℃-439℃ with an average of 390℃, and salinities in a range of 3%-30% NaCl equiv. The forth episode happened at the waning stage of mineralization, giving fluid temperatures below 350℃ with an average of 265℃ and salinities of 2.1%-40.4% NaCl equiv.  相似文献   

2.
The Diyanqinamu Mo deposit, a newly discovered porphyry deposit in the northern-central part of the Great Xing'an Range, Inner Mongolia, China, is characterized by widely distributed fluorite. It is important to note that almost all the fluorite that is paragenetic with molybdenite is purple. The Tb/Ca–Tb/La ratios of these purple fluorite samples show that they have a hydrothermal origin.The unidirectional solidification texture at the apex of the aplitic granite and the low F contents in the andesite suggest that most of F in fluorite was derived from granitic melts. These observations suggest that the fluorite was related to the magmatic-hydrothermal fluids. All the fluorite separates have consistent total REE contents with LREE-depleted, HREE-enriched, negative Eu anomaly,unapparent Ce anomaly and positive Y anomaly. These characteristics are significantly different than those of country granite, andesite and tuff whole-rock. The positive Y anomaly of the fluorite separates implies that the hydrothermal fluids migrated a long distance, as suggested by the fact that the fluorite-molybdenite veins were mostly hosted in andesite and tuff, far from the Mo ore-forming granites. The features of LREE-depleted and HREE-enriched fluorite are due to the REE-complex in the F-enriched fluids during migration. The stronger negative Eu anomaly of fluorite than those of country rocks suggests that the Eu anomaly of the original hydrothermal fluid was enhanced by the high temperature(generally above 200 or250 °C). The widespread magnetite in the studied deposit indicates that the magmatic-hydrothermal fluid was oxidized at early stage. On the other hand, the pyrite was also paragenetic, with the molybdenite and unapparent Ce anomaly implying that the hydrothermal fluid probably experienced oxygen fugacity decreasing during migration,which is important for Mo mineralization.  相似文献   

3.
The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics of the Baogudi gold district,we carried out petrographic observations,elemental analyses,and fluid inclusion and isotopic composition studies.We also compared the results with those of typical Carlin-type gold deposits in southwestern Guizhou.Three mineralization stages,namely,the sedimentation diagenesis,hydrothermal(main-ore and late-ore substages),and supergene stages,were identified based on field and petrographic observations.The main-ore and late-ore stages correspond to Au and Sb mineralization,respectively,which are similar to typical Carlin-type mineralization.The mass transfer associated with alteration and mineralization shows that a significant amount of Au,As,Sb,Hg,Tl,Mo,and S were added to mineralized rocks during the main-ore stage.Remarkably,arsenic,Sb,and S were added to the mineralized rocks during the late-ore stage.Element migration indicates that the sulfidation process was responsible for ore formation.Four types of fluid inclusions were identified in ore-related quartz and fluorite.The main-ore stage fluids are characterized by an H2O–NaCl–CO2–CH4±N2system,with medium to low temperatures(180–260℃)and low salinity(0–9.08%NaCl equivalent).The late-ore stage fluids featured H2O–NaCl±CO2±CH4,with low temperature(120–200℃)and low salinity(0–7.48%Na Cl equivalent).The temperature,salinity,and CO2and CH4concentrations of ore-forming fluids decreased from the main-ore stage to the late-ore stage.The calculated δ^13C,d D,and δ^18O values of the ore-forming fluids range from-14.3 to-7.0%,-76 to-55.7%,and 4.5–15.0%,respectively.Late-ore-stage stibnite had δ^34S values ranging from-0.6 to 1.9%.These stable isotopic compositions indicate that the ore-forming fluids originated mainly from deep magmatic hydrothermal fluids,with minor contributions from strata.Collectively,the Baogudi metallogenic district has geological and geochemical characteristics that are typical of Carlin-type gold deposits in southwest Guizhou.It is likely that the Baogudi gold district,together with other Carlin-type gold deposits in southwestern Guizhou,was formed in response to a single widespread metallogenic event.  相似文献   

4.
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the fi...  相似文献   

5.
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.  相似文献   

6.
The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and Peize antimony(Sb) deposits.We analyzed fluid inclusions(FIs) in stibnite and coexisting quartz,as well as the sulfur isotopic composition of stibnite,to better understand the nature of the ore-forming fluid and the metallogenic process.The FIs data from samples of the stibnite and coexisting quartz indicate that the ore-forming fluids were characterized by low-temperature(150-210 ℃),low-salinity(1.5 wt%-6.0 wt%NaCl equiv.),and low-density(0.872-0.961 g/cm~3).The δ~(34)S values of stibnite(-8.21‰ to 3.76‰,average =-6.30‰)fall in between the sulfur isotopic compositions of the mantle and of biogenic sulfur in sedimentary rocks.However,the δ~(34)S_(∑s) values(-4.41 ‰ to +0.04‰,average =-2.49‰) of the ore-forming fluids are generally closer to the sulfur isotopic composition of the mantle source,indicating that the sulfur in the LAOF was mainly sourced from the mantle,but with possible involvement of biogenic sulfur.In addition,FIs petrography and ore deposit geology show that fluid boiling resulted from an abrupt decrease in pressure,which may have triggered the precipitation of stibnite.We conclude that low-temperature,dilute hydrothermal fluids with mixed origins migrated along the regional fault and interacted with the wall rock,extracting the ore-forming materials.Then,the oreforming fluids were injected into the fault fracture zones.  相似文献   

7.
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310℃, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02Ra, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.  相似文献   

8.
The Anjiayingzi gold deposit in Chifeng County, Inner Mongolia is located in the central part of the gold mineralization belt of the northern margin of the North China Craton (NCC), and is adjacent to the Paleozoic Inner Mongolia-Da Hinggan Mountains orogenic belt in the north. The Chifeng-Kaiyuan fault, which separates the NCC from this orogenic belt, is considered to be a regional ore-controlling structure. The Anjiayingzi gold deposit is a mediate-size quartz lode-gold deposit and is hosted by the Anjiayingzi quartz monzonite that was emplaced into the basement composed of early Precambrian gneisses. Rhyolitic and porphyritic dikes are generally associated with the gold mineralization. Zircon U-Pb analyses suggest that the Anjiayingzi granite was emplaced from 132 Ma to 138 Ma, while the rhyolitic dikes that occupy the same fracture system as the gold-bearing quartz veins and locally crosscut the gold lodes crystallized from 125 Ma to 127 Ma. These results constrain the mineralization age between 126  相似文献   

9.
The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a paragenetic sequence of an early Fe-oxide–Pyrite stage(Ⅰ) and a late Fe-oxide–pyrrhotite stage(Ⅱ). Stage Ⅰ magnetite grains are generally fragmented, euhedral–subhedral, largesized crystals accompanying with slightly postdated pyrite.Stage Ⅱ magnetite grains are mostly unfragmented, anhedral, relatively small-sized grains that co-exist with pyrrhotite. Combined with micro-textural features and previously-obtained geochronological data, we consider that these two stages of iron mineralization in the Pingchuan deposit correspond to the Permian ELIP magmatism and Cenozoic fault activity event. Both the Stage Ⅰ and Ⅱ magnetites are characterized with overall lower contents of trace elements(including Cr, Ti, V, and Ni) than the ELIP magmatic magnetite, which suggests a hydrothermal origin for them. ‘‘Skarn-like' enrichment in Sn, Mn, and Zn in the Stage Ⅰ magnetite grains indicate significant material contributions from carbonate wall-rocks due to water–rock interaction in ore-forming processes. Stage Ⅱ magnetite grains contain higher Mn concentrations than Stage Ⅰ magnetite grains, which possibly implies more contribution from carbonate rocks. In multiple-element diagrams, the Stage Ⅰ magnetite shows systematic similarities to Kiruna-type magnetite rather than those from other types of deposits. Combined with geological features and previous studies on oxygen isotopes, we conclude that hydrothermal fluids have played a key role in the generation of the Pingchuan low-Ti iron deposit.  相似文献   

10.
The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closely related to uranium mineralization.The textures major and trace elements,S–He–Ar isotopes compositions of pyrites in ores of different grade were observed and/or analyzed by optical microscope,scanning electron microscope,electron microprobe,laser ablation inductively coupled plasma mass spectrometry,and noble gas mass spectrometer (Helix-SFT).It is observed that these U-related pyrites are generally euhedral–subhedral with dissolution textures,anhedral variety with colloform texture veinlet and fine particles,and the color of the associated minerals is mostly dark hue,such as purple–black fluorite dark-red hematite,and dark-green chlorite,etc.The analytical results show that the average compositions of major elements in pyrite are FeS_(1.944).Pyrites are characterized by S-deficiency,low content of Co and Th,and Co/Ni[1which indicate that these ores are of low-temperature hydrothermal origin.We found that the higher the grade of ore,the more deficient in S,the more obvious negative d~(34)S,and the higher REE content (close to U-rich granitic pluton) of pyrite.The S–He–Ar isotopic compositions of various varieties of pyrites indicate that the ore-forming fluids mainly come from crust-derived fluids and mixed with mantle-derived fluids.  相似文献   

11.
This paper reports the variation rules for the typomorphic parameters of the pyrite and the gold enrichment rules of the Denggezhuang quartz vein gold deposit at a large-depth scale,providing the mineral signs for deep prospecting prediction through detailed study of the characteristics of crystal' habits,chemical composition,the thermoelectricity of pyrites,and mineralogical mapping.This paper primarily discusses the correlation between the mineralization intensity and the space-time evolution of the mineralogical parameters,clarifies the physicochemical conditions during gold mineralization,and provides information useful for deep mineralization prediction.We demonstrate that the crystal habits of the pyrites are very complex,primarily occurring as {100},{210},and their combinate form.{210} and {100}+{210} have positive correlations with gold mineralization,and {100}+{210} therefore can be useful for locating rich ore segments.The composition of pyrites is characteristically poor in S and rich in As.Their typical trace elements are composed of Mo,As,Pb,Cu,Bi,Zn,Au,Co,Se,Sb,Ag,Ni,Cr,and Te.The average contents of trace elements in pyrites from various stages show that the crystallizing temperature gradually decreased from an early stage to the metallogenic episodes.The precipitation and accumulation of Au and Ag occur primarily in the quartz-pyrite stage(III) and the polymetal minerals stage(IV).The occurrence rate of P-type pyrites(P(%)) is 83.52%.There is a larger dispersion of the thermoelectrical coefficient of pyrite(α) in the Denggezhuang gold deposit than in other deposits in the Jiaodong Peninsula.The electrical conductivity assemblage of pyrites from I to V is characterized by P≥N→PN→PN→PN→P≥N,which is usually considered beneficial for mineralization.The relative contents of As+Sb+Se+Te and Co+Ni are closely correlated to P-type and N-type average values and their occurrence rates.According to the crystallizing temperature of pyrite,the mineralization intensity,and the denudation degree,the mineralization temperature of the Denggezhuang gold deposit is in the range of 150–322℃ and is of a medium-low temperature.The orebody has already become denuded to the top-middle of the orebody,and the size of the orebody is larger than 900 m.Based on the vertical zoning of the thermoelectrical coefficients of pyrites and P-type pyrite mapping,it is suggested that the segment between ?425 and ?800 m may have exploration potential to the northeast of line 94 of the No.I2-2 orebody.  相似文献   

12.
The Langdu skarn copper deposit in the Zhongdian area, Yunnan Province, China, has an average Cu grade of 6.49 %. The deposit is related to a porphyry intrusion(*216 Ma), which was emplaced in the Upper Triassic sedimentary rocks of the Tumugou and Qugasi Formations.At the Langdu skarn copper deposit, carbon and oxygen isotope ratios of fresh limestones(d18O = 3.0–5.6 % relative to V-SMOW; d13 C = 24.5–25.7 % relative to PDB)and partly altered limestones(d18O = 27–7.2 to-1.9 %;d13C = 11.8–15.2 %) indicated that the deposit was a typical marine carbonate source. Oxygen and carbon isotope values for calcites formed at different hydrothermal stages are-9.1 to 0.2 and 10.1–16.3 %, respectively. Moreover,the carbon–oxygen isotopic composition of an ore-forming fluid(d18O = 5.0–9.5 %, d13 C =-7.3 to-5.3 %) suggested the presence of magmatic water, which most likely came from the differentiation or melting of a homologous magma chamber. The deposition of Calcite I may arise from metasomatism in an open system with a progressively decreasing temperature.Later, the minerals chalcopyrite, pyrrhotite, quartz and Calcite II were precipitated due to immiscibility. Water–rock interaction could potentially be responsible for Calcite III precipitation in the post-ore stage.  相似文献   

13.
The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ~(87)Rb/~(86)Sr and ~(87)Sr/~(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ~(87)Sr/~(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.  相似文献   

14.
The Yao'an Pb–Ag deposit, located in the Chuxiong Basin, western Yangtze Block, is an important component of the Jinshajiang–Ailaoshan alkaline porphyry–related polymetallic intrusive belt. This complex suite of rock bodies includes a vein of pseudoleucite porphyry within deposits of syenite porphyry and trachyte.The pseudoleucite is characterized by a variable greyish,greyish-white, and greyish-green porphyritic texture. Phenocrysts are mainly pseudoleucite with small amounts of alkali feldspar and biotite. In an intense event, leucite phenocrysts altered to orthoclase, kaolinite, and quartz.Both the pseudoleucite porphyry and the syenite porphyry samples were typical alkali-rich, K-rich, al-rich rocks with high LaN/YbNratios; enriched in light rare earth elements and large-ion lithophile elements, and depleted in high field strength elements; and with strongly negative Ta, Nb, and Ti(TNT) anomalies and slightly negative Eu anomalies—all characteristics of subduction-zone mantle-derived rock.We obtained a LA-ICP-MS zircon U–Pb age of 34.1 ± 0.3 Ma(MSWD = 2.4), which is younger than the established age of the Indian and Eurasian Plate collision.The magma derived from a Type-II enriched mantle formed in a post-collisional plate tectonic setting. The geochemical characteristics of the Yao'an pseudoleucite porphyry are powerful evidence that the porphyry'sdevelopment was closely linked to the Jinshajiang–Ailaoshan fault and to the Indian-Eurasian collision.  相似文献   

15.
The fault-controlled Nibao Carlin-type gold deposit,together with the strata-bound Shuiyindong deposit,comprise a significant amount of the disseminated gold deposits in southwestern Guizhou Province,China.Five main types and two sub-types of pyrite at the Nibao deposit(Py1a/Py1b,Py2,Py3,Py4,Py5)were distinguished based on detailed mineralogical work.Py1,Py2and Py3 are Au-poor,whereas Py4 and Py5 are Au-rich,corresponding to a sedimentary and hydrothermal origin,respectively.Through systematic in situ analyses of NanoSIMS sulfur isotopes,the framboid pyrite Py1a with negative δ^34S values(-53.3 to-14.9%)from the Nibao deposit were found to originate from bacterial sulfate reduction(BSR)processes in an open and sulfate-sufficient condition while the superheavy pyrite Py1b(73.7–114.8%)is probably due to the potential influence of closed-system Rayleigh fractionation or the lack of preservation of deepsea sediments.Data of Py2 and Py3 plot within the area of S isotope compositions from biogenic and abiogenic sulfate reduction.In view of few coeval magmatic rocks in the mining district,the near zero δ^34S values of the Au-rich pyrites(Py4 and Py5)may discount the potential involvement of magmatic but metamorphic or sedimentary origin.LA-ICP-MS and TEM work show that Au in ore-related pyrite is present as both nanoparticles and structurally bound.LA-ICP-MS analyses show that the Au-rich pyrite also contains higher As,Cu,Sb,Tl and S than other types of pyrite,which inferred a distal manifestation of deep hydrothermal mineralization systems.  相似文献   

16.
In China, most Precambrian banded iron formations(BIFs) are situated in the North China Craton. The Yuanjiacun iron deposit, located in the Lüliang area, is arguably the most representative Superior-type BIF. This iron deposit is coherent with the sedimentary rock succession of the Yuanjiacun Formation in the lower Lüliang Group, and was interpreted to be deposited at 2.3–2.1 Ga, based on ages of overlying and underlying volcanic strata. This age overlaps with the time range of the Great Oxidation Event(GOE, 2.4–2.2 Ga). The Yuanjiacun BIF consists mainly of subhedral-xenomorphic magnetite and quartz and rarely other minerals with a lower degree of metamorphism, from greenschist to lower amphibolite facies. The geochemical characteristics of this BIF are similar to those of Superior-type BIFs. Prominent positive La, Y, and Eu anomalies normalized by the Post Archean Australian Shale(PAAS) indicate that the primary chemical precipitate is a result of solutions that represent mixtures of seawater and high-T hydrothermal fluids. The contamination from crustal detritus found is negligible based on low abundances of Al2O3 and TiO2(0.5%) and of trace elements such as Th, Hf, Zr, and Sc(1.5 ppm), as well as the lack of co-variations between Al2O3 and TiO2. In particular, the Yuanjiacun BIF samples do not display significant negative Ce anomalies like those of the Archean iron formations, but rather, the Yuanjiacun BIF samples exhibit prominent positive Ce anomalies, low Y/Ho ratios, and high light to heavy REE((Pr/Yb)SN) ratios, which are essentially consistent with the late Paleoproterozoic(2.0 Ga) BIFs around the world. These characteristics of the Yuanjiacun BIF samples imply that the ancient ocean(2.3–2.1 Ga) was redox-stratified from oxic shallow water to deeper anoxic water. The specific redox conditions of the ancient ocean may be related to the GOE, which gave rise to the oxidation of Ce and Mn in the upper water, and to the presence of a Mn oxide shuttle in the ocean, resulting in varying REE patterns due to the precipitation and dissolution of this Mn oxide shuttle under different redox states. Therefore, the Yuanjiacun BIF appears to have formed near the redoxcline and lower-level reduced marine water.  相似文献   

17.
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".  相似文献   

18.
There occurred several eruptions from Changbaishan Tianchi volcano in Holocene, and at least three of them were believed to be true according to the formal studies. The products of three eruptions were yellow comenditic pumice of - 5000a B.P. (Eruption Ⅰ ), gray comenditic pumice and pyroclastic flow of - 1000a B.P. ( Eruption II, i.e. the millennium explosive eruption), black trachy pumice and welded tuff of - 300a B.P. ( Eruption Ⅲ ) respectively. There were a large number of melt inclusions found in phenocrysts, which differ in size and color. The Leitz 1350 heating stage experiments for melt inclusions in host feldspars from three Holocene eruptions of Changbaishan Tianchi volcano imply that there were little differences between the homogenization temperatures of melt inclusions from Eruptions Ⅰ and Ⅲ, whereas it was rather complicated for Eruption H, i.e. there might be two kinds of melt with different homogenization temperature periods, which gave the evidence for the assumption that the explosive millennium eruption of Tianchi volcano was triggered by injection and mixing of two different magmas. The experimental results also indicate that ( 1 ) small melt inclusion is easy to be homogenized, while the large one, especially the one with lots of daughter crystals, is rather difficult to be homogenized; (2) homogenization temperature closely correlates with the size of melt inclusion within host crystal, with the temperature point switching from high heating rate to low heating rate, and correlates with whether it is the first time to obtain homogenization as well; and (3) a melt inclusion can get different homogenization temperatures when it is repeatedly heated. Even more, the next homogenization temperature is usually higher than the former one, which testifies the phenomenon that hydrogen migration occurs during repeated heating.  相似文献   

19.
By studying the light isotopic compositions of carbon, oxygen, and hydrogen, combined with previous research results on the ore-forming source of the deposit, the authors try to uncover its metallogenic origin. The δ18O and δ13C isotope signatures of dolomite samples vary between 10.2 and 13.0‰, and between-7.2 and-5.2‰, respectively, implying that the carbon derives from the upper mantle. δD and δ18O of quartz, biotite, and muscovite from different ore veins of ...  相似文献   

20.
The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analysis,field emission scanning electron microscopy,energy dispersive spectrometer,and automatic mineral analysis software.Results identified that 91.69%of ThO2 in the combined samples was mainly distributed in rare earth minerals(bastnaesite,huanghoite,monazite;56.43%abundance in the samples),iron minerals(magnetite,hematite,pyrite;20.97%),niobium minerals(aeschynite;14.29%),and gangue minerals(aegirine,riebeckite,mica,dolomite,apatite,fluorite;4.22%).An unidentified portion(4.09%)of ThO2 may occur in other niobium minerals(niobite,ilmenorutile,pyrochlore).Only a few independent minerals of thorium occur in the iron ore samples.Thorium mainly occurs in rare earth minerals in the form of isomorphic substitution.Analyses of the geochemical characteristics of the major elements indicate that thorium mineralization in the Main Ore Body was related to alkali metasomatism,which provided source material and favorable porosity for hydrothermal mineralization.Trace elements such as Sc,Nb,Zr,and Ta have higher correlation coefficients with thorium,which resulted from being related to the relevant minerals formed during thorium mineralization.In addition,correlation analysis of ThO2 and TFe,and REO and TFe in the six types of iron ore samples showed that ThO2 did not always account for the highest distribution rate in rare earth minerals,and the main occurrence minerals of ThO2 were closely related to iron ore types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号