首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isopycnal analyses were performed on the Global Ocean Data Assimilation System(GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event. In 2010–12, a horseshoe-like pattern was seen,connecting negative temperature anomalies off and on the Equator, with a dominant influence from the South Pacific. During the 2010 La Nina event, warm waters piled up at subsurface depths in the western tropical Pacific. Beginning in early 2011,these warm subsurface anomalies propagated along the Equator toward the eastern basin, acting to reverse the sign of sea surface temperature(SST) anomalies(SSTAs) there and initiate a warm SSTA. However, throughout early 2011, pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific. As isopycnal surfaces outcropped in the central equatorial Pacific, negative anomalies from the subsurface spread upward along with mean circulation pathways, naturally initializing a cold SSTA. In the summer, a cold SSTA reappeared in the central basin, which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific. These SSTAs acted to initiate local coupled air–sea interactions, generating atmospheric–oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011. However, the cooling tendency in mid-2012 did not develop into another La Nina event, since the cold anomalies in the South Pacific were not strong enough. An analysis of the 2007–09 La Nina event revealed similar processes to the2010–12 La Nina event.  相似文献   

2.
A statistically-based low-level cloud parameterization scheme is introduced, modified, and applied in the Flexible coupled General Circulation Model (FGCM-0). It is found that the low-level cloud scheme makes improved simulations of low-level cloud fractions and net surface shortwave radiation fluxes in the subtropical eastern oceans off western coasts in the model. Accompanying the improvement in the net surface shortwave radiation fluxes, the simulated distribution of SSTs is more reasonably asymmetrical about the equator in the tropical eastern Pacific, which suppresses, to some extent, the development of the double ITCZ in the model. Warm SST biases in the ITCZ north of the equator are more realistically reduced, too. But the equatorial cold tongue is strengthened and extends further westward, which reduces the precipitation rate in the western equatorial Pacific but increases it in the ITCZ north of the equator in the far eastern Pacific. It is demonstrated that the low-level cloud-radiation feedback would enhance the cooperative feedback between the equatorial cold tongue and the ITCZ. Based on surface layer heat budget analyses, it is demonstrated that the reduction of SSTs is attributed to both the thermodynamic cooling process modified by the increase of cloud fractions and the oceanic dynamical cooling processes associated with the strengthened surface wind in the eastern equatorial Pacific, but it is mainly attributed to oceanic dynamical cooling processes associated with the strengthening of surface wind in the central and western equatorial Pacific.  相似文献   

3.
Based on Global Ocean Data Assimilation System(GODAS) and NCEP reanalysis data, atmospheric and oceanic processes possibly responsible for the onset of the 2011/12 La Nia event, which followed the 2010/11 La Nia even—referred to as a "double dip" La Nia—are investigated. The key mechanisms involved in activating the 2011/12 La Nia are illustrated by these datasets. Results show that neutral conditions were already evident in the equatorial eastern Pacific during the decaying phase of the 2010/11 La Nia. However, isothermal analyses show obviously cold water still persisting at the surface and at subsurface depths in off-equatorial regions throughout early 2011, being most pronounced in the tropical South Pacific. The negative SST anomalies in the tropical South Pacific acted to strengthen a southern wind across the equator. The subsurface cold water in the tropical South Pacific then spread northward and broke into the equatorial region at the thermocline depth. This incursion process of off-equatorial subsurface cold water successfully interrupted the eastern propagation of warm water along the equator, which had previously accumulated at subsurface depths in the warm pool during the 2010/11 La Nia event. Furthermore, the incursion process strengthened as a result of the off-equatorial effects, mostly in the tropical South Pacific. The negative SST anomalies then reappeared in the central basin in summer 2011, and acted to trigger local coupled air–sea interactions to produce atmospheric–oceanic anomalies that developed and evolved with the second cooling in the fall of 2011.  相似文献   

4.
The 2015/16 El Ni?o displayed a distinct feature in the SST anomalies over the far eastern Pacific(FEP)compared to the 1997/98 extreme case.In contrast to the strong warm SST anomalies in the FEP in the 1997/98 event,the FEP warm SST anomalies in the 2015/16 El Ni?o were modest and accompanied by strong southeasterly wind anomalies in the southeastern Pacific.Exploring possible underlying causes of this distinct difference in the FEP may improve understanding of the diversity of extreme El Ni?os.Here,we employ observational analyses and numerical model experiments to tackle this issue.Mixed-layer heat budget analysis suggests that compared to the 1997/98 event,the modest FEP SST warming in the 2015/16 event was closely related to strong vertical upwelling,strong westward current,and enhanced surface evaporation,which were caused by the strong southeasterly wind anomalies in the southeastern Pacific.The strong southeasterly wind anomalies were initially triggered by the combined effects of warm SST anomalies in the equatorial central and eastern Pacific(CEP)and cold SST anomalies in the southeastern subtropical Pacific in the antecedent winter,and then sustained by the warm SST anomalies over the northeastern subtropical Pacific and CEP.In contrast,southeasterly wind anomalies in the 1997/98 El Ni?o were partly restrained by strong anomalously negative sea level pressure and northwesterlies in the northeast flank of the related anomalous cyclone in the subtropical South Pacific.In addition,the strong southeasterly wind and modest SST anomalies in the 2015/16 El Ni?o may also have been partly related to decadal climate variability.  相似文献   

5.
The 2015/16 super El Ni?o event has been widely recognized as comparable to the 1982/83 and 1997/98 El Ni?o events.This study examines the main features of upper-ocean dynamics in this new super event,contrasts them to those in the two historical super events,and quantitatively compares the major oceanic dynamical feedbacks based on a mixed-layer heat budget analysis of the tropical Pacific.During the early stage,this new event is characterized by an eastward propagation of SST anomalies and a weak warm-pool El Ni?o;whereas during its mature phase,it is characterized by a weak westward propagation and a westward-shifted SST anomaly center,mainly due to the strong easterly wind and cold upwelling anomalies in the far eastern Pacific,as well as the westward anomalies of equatorial zonal current and subsurface ocean temperature.The heat budget analysis shows that the thermocline feedback is the most crucial process inducing the SST anomaly growth and phase transition of all the super events,and particularly for this new event,the zonal advective feedback also exerts an important impact on the formation of the strong warming and westward-shifted pattern of SST anomalies.During this event,several westerly wind burst events occur,and oceanic Kelvin waves propagate eastwards before being maintained over eastern Pacific in the mature stage.Meanwhile,there is no evidence for westward propagation of the off-equatorial oceanic Rossby waves though the discharging process of equatorial heat during the development and mature stages.The second generation El Ni?o prediction system of the Beijing Climate Center produced reasonable event real-time operational prediction during 2014–16,wherein the statistical prediction model that considers the preceding oceanic precursors plays an important role in the multi-method ensemble prediction of this super.  相似文献   

6.
The role of the Indonesian Throughflow(ITF) in the influence of the Indian Ocean Dipole(IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events,negative sea surface height anomalies(SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling.These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nia-like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an El Nio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITF.  相似文献   

7.
The relationships between the tropical Indian Ocean basin(IOB)/dipole(IOD) mode of SST anomalies(SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958–2008.Both partial correlation analysis and composite analysis show that both the positive(negative) phase of the IOB and IOD(independent of each other) in the tropical Indian Ocean are possible contributors to the El Nio(La Nia) decay and phase transition to La Nia(El Nio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.  相似文献   

8.
The equatorial response to subtropical Pacific forcing was studied in a coupled climate model.The forcings in the western,central and eastern subtropical Pacific all caused a significant response in the equatorial thermocline,with comparable magnitudes.This work highlights the key role of air-sea coupling in the subtropical impact on the equatorial thermocline,instead of only the role of the "oceanic tunnel".The suggested mechanism is that the cyclonic (anticyclonic) circulation in the atmosphere caused by the subtropical surface warming (cooling) can generate an anomalous upwelling (downwelling) in the interior region.At the same time,an anomalous downwelling (upwelling) occurs at the equatorward flank of the forcing,which produces anomalous thermocline warming (cooling),propagating equatorward and resulting in warming (cooling) in the equatorial thermocline.This is an indirect process that is much faster than the "oceanic tunnel" mechanism in the subtropical impact on the equator.  相似文献   

9.
The phenomenon of ENSO asymmetry has been recognized for many years, but most studies have focused on the asymmetry of surface temperature anomalies in the equatorial eastern Pacific. Here, the authors investigate the temperature asymmetry associated with ENSO in the subsurface of the western Pacific through analysis of observations and numerical experiments with an ocean GCM. Both the observation and simulation exhibit significant ENSO asymmetry, characterized by negative temperature skewness in the equatorial western Pacific and positive skewness in the eastern Pacific. Heat budget analysis reveals that nonlinear dynamical heating results in the positive temperature asymmetry in the equatorial eastern Pacific, but tends to weaken the negative temperature asymmetry in the equatorial western Pacific. The climatological meridional current transports the temperature anomalies and corresponding negative asymmetry from the off-equator region to the equator in the subsurface of the western Pacific. Through a sensitivity experiment with reversed wind stress forcing, the authors suggest that the skewness of the wind stress anomalies does not contribute to the negative temperature asymmetry in the western Pacific in the first-order approximation, while the internal nonlinear dynamics does play a key role. The study suggests that, as a result of nonlinear processes, the oceanic responses to anomalous wind stress are nonlinear and asymmetric in the tropical Pacific.  相似文献   

10.
The interannual variations of rainfall over southwest China (SWC) during spring and its relationship with sea surface temperature anomalies (SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data from 26 stations in SWC between 1961 and 2010, NCEP/NCAR re-analysis data, and Hadley global SST data. Sensitivity tests are conducted to assess the response of precipitation in SWC to SSTAs over two key oceanic domains, using the global atmospheric circulation model ECHAM5. The interannual variation of rainfall over SWC in spring is very significant. There are strong negative (positive) correlation coefficients between the anomalous precipitation over SWC and SSTAs over the equatorial central Pacific (the mid-latitude Pacific) during spring. Numerical simulations show that local rainfall in the northwest of the equatorial central Pacific is suppressed, and a subtropical anticyclone circulation anomaly is produced, while a cyclonic circulation anomaly in the mid-latitude western Pacific occurs, when the equatorial Pacific SSTAs are in a cold phase in spring. Anomalous northerly winds appear in the northeastern part of SWC in the lower troposphere. Precipitation increases over the Maritime Continent of the western equatorial Pacific, while a cyclonic circulation anomaly appears in the northwest of the western equatorial Pacific. A trough over the Bay of Bengal enhances the southerly flow in the south of SWC. The trough also enhances the transport of moisture to SWC. The warm moisture intersects with anomalous cold air over the northeast of SWC, and so precipitation increases during spring. On the interannual time scale, the impacts of the mid-latitude Pacific SSTAs on rainfall in SWC during spring are not significant, because the mid-latitude Pacific SSTAs are affected by the equatorial central Pacific SSTAs; that is, the mid-latitude Pacific SSTAs are a feedback to the circulation anomaly caused by the equatorial central Pacific SSTAs.  相似文献   

11.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Nina) to a warm water state (El Nino) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980-2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Nino (or La Nina) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Nino and La Nina events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16°N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Nino event to a La Nina event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Nino or La Nina event at least one year in advance.  相似文献   

12.
ABSTRACT The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model developed at the Los Alamos National Laboratory (LANL). A long-term control simulation of the LANL-POP model forced by a reconstructed coupled wind stress field over the period 1949-2001 showed that the ocean model not only simulates a reasonable climatology, but also produces a climate variability pattem very similar to observed PDV. In the Equatorial Pacific (EP) region, the decadal warming is confined in the thin surface layer. Beneath the surface, a strong compensating cooling, accompanied by a basin-wide-scale overturning circulation in opposition to the mean flow, occurs in the thermocline layer. In the North Pacific (NP) region, the decadal variability nonetheless exhibits a relatively monotonous pattern, characterized by the dominance of anomalous cooling and eastward flows. A term balance analysis of the perturbation heat budget equation was conducted to highlight the ocean's role in main- taining the PDV-like variability over the EP and NP regions. The analyses showed that strong oceanic adjustment must occur in the equatorial thermocline in association with the anomalous overturning circulation in order to maintain the PDV-like variability, including a flattening of the equatorial thermocline slpoe and an enhancement of the upper ocean's stratification (stability), as the climate shifts from a colder regime toward a warmer one. On the other hand, the oceanic response in the extratropical region seems to be confined to the surface layer, without much participation from the subsurface oceanic dynamics.  相似文献   

13.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

14.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Ni?na) to a warm water state (El Ni?no) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980–2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Ni?no (or La Ni?na) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Ni?no and La Ni?na events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Ni?no event to a La Ni?na event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Ni?no or La Ni?na event at least one year in advance.  相似文献   

15.
Based on the simple ocean data assimilation (SODA) reanalysis dataset from the University of Maryland and the method of Empirical Orthogonal Functions (EOF), the characteristics of interannual and interdecadal variabilities of the equatorial Pacific subsurface oceanic temperature anomaly (SOTA) are captured. The first and second modes of the equatorial Pacific SOTA in the interannual and interdecadal variations are found respectively and the effect of the second mode on the ENSO cycle is discussed. Results show that the first mode of SOTA’s interannual and interdecadal variabilities exhibit a dipole pattern, indicating that the warm and cold temperature anomalies appear simultaneously in the equatorial subsurface Pacific. The second mode shows coherent large-scale temperature anomalies in the equatorial subsurface Pacific, which is a dominant mode in the evolution of ENSO cycle. The temporal series of the second mode has a significant lead correlation with the Ni?o-3.4 index, which can make a precursory prediction signal for ENSO. The function of this prediction factor in SOTA is verified by composite and case analyses.  相似文献   

16.
The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following the E1 Nino events. There also tend to be warm anomalies in the boreal summer or fall during La Nina development years and cold anomalies in winter or spring following the La Nina events. The seasonal phase-locking of SST change in the EIO associated with E1 Nino/Southern Oscillation is linked to the variability of convection over the maritime continent, which induces an atmospheric Rossby wave over the EIO. Local air-sea interaction exerts different effects on SST anomalies, depending on the relationship between the Rossby wave and the mean flow related to the seasonal migration of the buffer zone, which shifts across the equator between summer and winter. The summer cold events start with cooling in the Timor Sea, together with increasing easterly flow along the equator. Negative SST anomalies develop near Sumatra, through the interaction between the atmospheric Rossby wave and the underneath sea surface. These SST anomalies are also contributed to by the increased upwelling of the mixed layer and the equatorward temperature advection in the boreal fall. As the buffer zone shifts across the equator towards boreal winter, the anomalous easterly flow tends to weaken the mean flow near the equator, and the EIO SST increases due to the reduction of latent heat flux from the sea surface. As a result, wintertime SST anomalies appear with a uniform and nearly basin-wide pattern beneath the easterly anomalies. These SST anomalies are also caused by the increase in solar radiation associated with the anticyclonic atmospheric Rossby wave over the EIO. Similarly, the physical processes of the summer warm events, which are followed by wintertime cold SST anomalies, can be explained by the changes in atmospheric and oceanic fields with opposite signs to those anomalies described above.  相似文献   

17.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

18.
Solar radiation penetration in the upper ocean is strongly modulated by phytoplankton, which impacts the upper ocean temperature structure, especially in the regions abundant with phytoplankton. In the paper, a new solar radiation penetration scheme, based on the concentration of chlorophyll-a, was introduced into the LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM). By comparing the simulations using this new scheme with those using the old scheme that included the constant e-folding attenuation depths in LICOM, it was found that the sea surface temperature (SST) and circulation in the central and eastern equatorial Pacific were both sensitive to the amount of phytoplankton present. Distinct from other regions, the increase of chlorophyll-a concentration would lead to SST decrease in the central and eastern equatorial Pacific. The higher chlorophyll-a concentration at the equator in comparison to the off-equator regions can enlarge the subsurface temperature gradient, which in turn strengthens the upper current near the equator and induces an enhancing upwelling. The enhancing upwelling can then lead to a decrease in the SST in the central and eastern equatorial Pacific. The results of these two sensitive experiments testify to the fact that the meridional gradient in the chlorophyll-a concentration can result in an enhancement in the upper current and a decrease in the SST, along with the observation that a high chlorophyll-a concentration at the equator is one of the predominant reasons leading to a decrease in the SST. This study points out that these results can be qualitatively different simply because of the choice of the solar radiation penetration schemes for comparison. This can help explain previously reported contradictory conclusions.  相似文献   

19.
A depth map (close to that of the thermocline as defined by 20℃) of climatically maximum seatemperature anomaly was created at the subsurface of the tropical Pacific and Indian Ocean, based on which the evolving sea-temperature anomaly at this depth map from 1960 to 2000 was statistically analyzed. It is noted that the evolving sea temperature anomaly at this depth map can be better analyzed than the evolving sea surface one. For example, during the ENSO event in the tropical Pacific, the seatemperature anomaly signals travel counter-clockwise within the range of 10°S-10°N, and while moving, the signals change in intensity or even type. If Dipole is used in the tropical Indian Ocean for analyzing the depth map of maximum sea-temperature anomaly, the sea-temperature anomalies of the eastern and western Indian Oceans would be negatively correlated in statistical sense (Dipole in real physical sense), which is unlike the sea surface temperature anomaly based analysis which demonstrates that the inter-annual positive and negative changes only occur on the gradients of the western and eastern temperature anomalies. Further analysis shows that the development of ENSO and Dipole has a time lag features statistically, with the sea-temperature anomaly in the eastern equatorial Pacific changing earlier (by three months or so). And the linkage between these two changes is a pair of coupled evolving Walker circulations that move reversely in the equatorial Pacific and Indian Oceans.  相似文献   

20.
A premonitory sign of an anomalous SST over the eastern equatorial Pacific shows up in the North Pacific Subtropical Mode Water (STMW) 18 months earlier,and the air-sea relationship between the STMW and the anomalous SST over the eastern equatorial Pacific is shown.This premonitory connection involves an air-sea coupling between the longtime persistent mid-latitude sea surface temperature anomaly (SSTA) induced by the remote re-emergence of the STMW and the following spring subtropical atmospheric circulation anomalies.An examination of the air-sea interaction reveals that the following spring subtropical atmospheric circulation,which responds to the longtime persistent SSTA,is dominated by the anomalous negative (positive) geopotential height downstream of the negative (positive) SSTA in the strong (weak) STMW case.Thus,the tropics adjust to these anomalies through coupled dynamics,producing positive (negative) SST anomalies over the eastern equatorial Pacific.A cold water event that occurred over the eastern equatorial Pacific during winter 2008-09 was successfully forecasted by the weak summer STMW index in 2007.The evolution of this process for the air-sea interactions from the autumn of 2007 to December 2008 is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号