首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
对于足点被日面边缘遮挡住的耀斑的观测研究是诊断日冕硬X射线辐射的一个重要方法.通过统计分析RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager)卫星观测到的71个此类耀斑硬X射线源发现,前人提出的两类源,即日冕X射线辐射中热辐射与非热辐射源区空间分离较小的源和分离较大的源,在能谱、成像、光变曲线以及GOES持续时间等方面都没有显著的区别,其中辐射区的面积、耀斑总热能以及GOES持续时间与分离距离之间有很好的相关性.这些结果支持近年来提出的一些耀斑统一模型.同时也表明Masuda耀斑只是一类非常特殊的事件,不具有日冕硬X射线辐射的一般特征.  相似文献   

2.
Aschwanden  Markus J.  Brown  John C.  Kontar  Eduard P. 《Solar physics》2002,210(1-2):383-405
We present an analysis of hard X-ray imaging observations from one of the first solar flares observed with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft, launched on 5 February 2002. The data were obtained from the 22 February 2002, 11:06 UT flare, which occurred close to the northwest limb. Thanks to the high energy resolution of the germanium-cooled hard X-ray detectors on RHESSI we can measure the flare source positions with a high accuracy as a function of energy. Using a forward-fitting algorithm for image reconstruction, we find a systematic decrease in the altitudes of the source centroids z(ε) as a function of increasing hard X-ray energy ε, as expected in the thick-target bremsstrahlung model of Brown. The altitude of hard X-ray emission as a function of photon energy ε can be characterized by a power-law function in the ε=15–50 keV energy range, viz., z(ε)≈2.3(ε/20 keV)−1.3 Mm. Based on a purely collisional 1-D thick-target model, this height dependence can be inverted into a chromospheric density model n(z), as derived in Paper I, which follows the power-law function n e(z)=1.25×1013(z/1 Mm)−2.5 cm−3. This density is comparable with models based on optical/UV spectrometry in the chromospheric height range of h≲1000 km, suggesting that the collisional thick-target model is a reasonable first approximation to hard X-ray footpoint sources. At h≈1000–2500 km, the hard X-ray based density model, however, is more consistent with the `spicular extended-chromosphere model' inferred from radio sub-mm observations, than with standard models based on hydrostatic equilibrium. At coronal heights, h≈2.5–12.4 Mm, the average flare loop density inferred from RHESSI is comparable with values from hydrodynamic simulations of flare chromospheric evaporation, soft X-ray, and radio-based measurements, but below the upper limits set by filling-factor insensitive iron line pairs.  相似文献   

3.
Vilmer  N.  Krucker  S.  Lin  R.P.  The Rhessi Team 《Solar physics》2002,210(1-2):261-272
The GOES C7.5 flare on 20 February 2002 at 11:07 UT is one of the first solar flares observed by RHESSI at X-ray wavelengths. It was simultaneously observed at metric/decimetric wavelengths by the Nançay radioheliograph (NRH) which provided images of the flare between 450 and 150 MHz. We present a first comparison of the hard X-ray images observed with RHESSI and of the radio emission sites observed by the NRH. This first analysis shows that: (1) there is a close occurrence between the production of the HXR-radiating most energetic electrons and the injection of radio-emitting non-thermal electrons at all heights in the corona, (2) modifications with time in the pattern of the HXR sources above 25 keV and of the decimetric radio sources at 410 MHz are observed occurring on similar time periods, (3) in the late phase of the most energetic HXR peak, a weak radio source is observed at high frequencies, overlying the EUV magnetic loops seen in the vicinity of the X-ray flaring sites above 12 keV. These preliminary results illustrate the potential of combining RHESSI and NRH images for the study of electron acceleration and transport in flares.  相似文献   

4.
We have used Ramaty High Energy Solar Spectroscopic Imager (RHESSI) modulation profiles in the 25 – 300 keV range to construct high-fidelity visibilities of 25 flares having at least two components. These hard X-ray visibilities, which are mathematically identical to the visibilities of radio imaging, were input to software developed for mapping solar flares in the microwave domain using the Maximum Entropy Method (MEM). We compared and contrasted the MEM maps with Clean and Pixon maps made with RHESSI software. In particular, we assessed the reliability of the maps and their morphologies for future investigations of the symmetry of bipolar electron beaming in the sample set.  相似文献   

5.
The RHESSI Spectrometer   总被引:2,自引:0,他引:2  
Smith  D.M.  Lin  R.P.  Turin  P.  Curtis  D.W.  Primbsch  J.H.  Campbell  R.D.  Abiad  R.  Schroeder  P.  Cork  C.P.  Hull  E.L.  Landis  D.A.  Madden  N.W.  Malone  D.  Pehl  R.H.  Raudorf  T.  Sangsingkeow  P.  Boyle  R.  Banks  I.S.  Shirey  K.  Schwartz  Richard 《Solar physics》2002,210(1-2):33-60
RHESSI observes solar photons over three orders of magnitude in energy (3 keV to 17 MeV) with a single instrument: a set of nine cryogenically cooled coaxial germanium detectors. With their extremely high energy resolution, RHESSI can resolve the line shape of every known solar gamma-ray line except the neutron capture line at 2.223 MeV. High resolution also allows clean separation of thermal and non-thermal hard X-rays and the accurate measurement of even extremely steep power-law spectra. Detector segmentation, fast signal processing, and two sets of movable attenuators allow RHESSI to make high-quality spectra and images of flares across seven orders of magnitude in intensity. Here we describe the configuration and operation of the RHESSI spectrometer, show early results on in-flight performance, and discuss the principles of spectroscopic data analysis used by the RHESSI software.  相似文献   

6.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is a European Space Agency hard X-ray/γ-ray observatory for astrophysics, covering photon energies from 15 keV to 10 MeV. It was launched in 2002, and since then the Bismuth Germanate (BGO) detectors of the Anti-Coincidence Shield (ACS) of the Spectrometer on INTEGRAL (SPI) have detected many hard X-ray (HXR) bursts from the Sun, producing light curves at photon energies above ≈?100 keV. The spacecraft has a highly elliptical orbit, providing long uninterrupted observing (about 90 % of the orbital period) with nearly constant background due to the shorter time needed to cross Earth’s radiation belts. However, because of technical constraints, INTEGRAL cannot be pointed at the Sun, and high-energy solar photons are always detected in nonstandard observation conditions. To make the data useable for solar studies, we have undertaken a major effort to specify the observing conditions through Monte Carlo simulations of the response of ACS for several selected flares. We checked the performance of the model employed for the Monte Carlo simulations using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations for the same sample of solar flares. We conclude that although INTEGRAL was not designed to perform solar observations, ACS is a useful instrument for solar-flare research. In particular, its relatively large effective area allows determining good-quality HXR/γ-ray light curves for X- and M-class solar flares and, in some cases, probably also for C-class flares.  相似文献   

7.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

8.
Previous observations show that in many solar flares there is a causal correlation between the hard X-ray flux and the derivative of the soft X-ray flux. This so-called Neupert effect is indicative of a strong link between the primary energy release to accelerate particles and plasma heating. It suggests a flare model in which the hard X-rays are electron – ion bremsstrahlung produced by energetic electrons as they lose their energy in the lower corona and chromosphere and the soft X-rays are thermal bremsstrahlung from the “chromospheric evaporation” plasma heated by those same electrons. Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observes in a broad energy band and its high spectral resolution and coverage of the low-energy range allow us to separate the thermal continuum from the nonthermal component, which gives us an opportunity to investigate the Neupert effect. In this paper, we use the parameters derived from RHESSI observations to trace the primary energy release and the plasma response: The hard X-ray flux or spectral hardness is compared with the derivative of plasma thermal energy in three impulsive flares on 10 November 2002 and on 3 and 25 August 2005. High correlations show that the Neupert effect does hold for the two hard X-ray peaks of the 10 November 2002 flare, for the first peaks of the 3 August 2005 flare, and for the beginning period of the 25 August 2005 flare.  相似文献   

9.
In connection with the RHESSI satellite observations of solar flares, which have revealed new properties of hard X-ray sources during flares, we offer an interpretation of these properties. The observed motions of coronal and chromospheric sources are shown to be the consequences of three-dimensional magnetic reconnection at the separator in the corona. During the first (initial) flare phase, the reconnection process releases an excess of magnetic energy related predominantly to themagnetic tensions produced before the flare by shear plasma flows in the photosphere. The relaxation of a magnetic shear in the corona also explains the downward motion of the coronal source and the decrease in the separation between chromospheric sources. During the second (main) flare phase, ordinary reconnection dominates; it describes the energy release in the terms of the “standard model” of large eruptive flares accompanied by the rise of the coronal source and an increase in the separation between chromospheric sources.  相似文献   

10.
By performing certain spatial and temporal criteria, we obtained 492 CME events simultaneously associated with GBM solar flare events (hereafter, GBM-flare–CME) from the total number 5123 Gamma-ray Burst Monitor (GBM) solar flares and 15228 Coronal Mass Ejections (CMEs) detected during the solar cycle 24 (2008–2019). Among these 492 events, which represent about 9.6% of the total number of the detected GBM flares, there are just 381 events (77.4%) representing the CMEs associated with the flares that are detected instantly by both GBM and RHESSI detectors. We found no significant distinction in the results after applying the spatial criteria compared with those arising from applying the temporal criteria only.Actually, all CMEs are ejected within the flare's preflare and the impulsive phases only. From our results, we conclude that the GBM flares whose long duration are most frequently associated with faster and wider CMEs and vice versa. In addition, the longer the flare's duration, the more interval time between the start time of GBM solar flare and CME's ejection time through a linear correlation [Mean Interval = 0.464 × Duration (min)] with a correlation coefficient equals 0.93. We conclude also that, the highly probable, γ-ray emitting flares (detected by GBM only) have a shorter duration and time interval than X-ray flares (detected also by RHESSI). As well as the GBM - CMEs events, without RHESSI associated CMEs are faster and wider than those associated with RHESSI events.  相似文献   

11.
We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1 s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (∼20%) of the groups show close correlation on time scales < 1 s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69 ± 0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission.  相似文献   

12.
Slow long-duration events (SLDEs) are flares characterized by the long duration of their rising phase. In many such cases the impulsive phase is weak without typical short-lasting pulses. Instead, smooth, long-lasting hard X-ray (HXR) emission is observed. We analyzed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from the RHESSI and GOES satellites. The physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. The characteristic decay time of the heating rate, after reaching its maximum value, is very long, which explains the long rising phase of these flares.  相似文献   

13.
Solar flares are known to release a large amount of energy. It is believed that the flares can excite velocity oscillations in active regions. We report here the changes in velocity signals in three active regions which have produced large X-class flares. The enhanced velocity signals appeared during the rise time of the GOES soft X-ray flux. These signals are located close to the vicinity of the hard X-ray source regions as observed with RHESSI. The power maps of the active region show enhancement in the frequency regime 5–6.5 mHz, while there is feeble or no enhancement of these signals in 2–4 mHz frequency band. High energy particles with sufficient momentum seem to be the cause for these observed enhanced velocity signals.  相似文献   

14.
We explore the 3–8 keV X-ray source motion along the loop legs in two solar flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on August 12 and November 28, 2002. Firstly, an artificial loop is constructed to have an outline with a fixed width wide enough to cover the X-ray sources at an energy band between 3–60 keV and at various times. Secondly, RHESSI images are reconstructed at 15 energy bands with an 8 s integration window but 1 s cadence. Thirdly, the X-ray source motions are traced from the brightness distribution along the flare loop. We find that these two events tend to start as a single source at 3–8 keV around the loop top, and then separate into two which move downward along the loop legs. These two almost reach the feet of the loop at the hard X-ray (i.e. at 25–50 keV) peak. After that, the two sources move back upward to the loop top and merge together at the same position where they began. The typical timescale is about ~70 s, and the maximum speed can reach 1000 km?s?1. Such a downward-to-upward motion along the loop is rarely seen in the observations, and it seems to be consistent with the density evolution at the loop top, first decreasing after heating and then increasing due to evaporation.  相似文献   

15.
The Transition Region and Coronal Explorer (TRACE) instrument includes a “white light” imaging capability with novel characteristics. Many flares with such white-light emission have been detected, and this paper provides an introductory overview of these data. These observations have 0.5″ pixel size and use the full broad-band response of the CCD sensor; the images are not compromised by ground-based seeing and have excellent pointing stability as well as high time resolution. The spectral response of the TRACE white-light passband extends into the UV, so these data capture, for the first time in images, the main radiative energy of a flare. This initial survey is based on a sample of flares observed at high time resolution for which the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) had complete data coverage, a total of 11 events up to the end of 2004. We characterize these events in terms of source morphology and contrast against the photosphere. We confirm the strong association of the TRACE white-light emissions - which include UV as well as visual wavelengths – with hard X-ray sources observed by RHESSI. The images show fine structure at the TRACE resolution limit, and often show this fine structure to be extended over large areas rather than just in simple footpoint sources. The white-light emission shows strong intermittency both in space and in time and commonly contains features unresolved at the TRACE resolution. We detect white-light continuum emission in flares as weak as GOES C1.6. limited by photon statistics and background solar fluctuations, and support the conclusion of Neidig (1989) that white-light continuum occurs in essentially all flares.  相似文献   

16.
We compare the photometric accuracy of spectra and images in flares observed with the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft. We test the accuracy of the photometry by comparing the photon fluxes obtained in different energy ranges from the spectral-fitting software SPEX with those fluxes contained in the images reconstructed with the Clean, MEM, MEM-Vis, Pixon, and Forward-fit algorithms. We quantify also the background fluxes, the fidelity of source geometries, and spatial spectra reconstructed with the five image reconstruction algorithms. We investigate the effects of grid selection, pixel size, field of view, and time intervals on the quality of image reconstruction. The detailed parameters and statistics are provided in an accompanying CD-ROM and web page. We find that Forward-fit, Pixon, and Clean have a robust convergence behavior and a photometric accuracy in the order of a few percent, while MEM does not converge optimally for large degrees of freedom (for large field of view and/or small pixel sizes), and MEM-Vis suffers in the case of time-variable sources. This comparative study documents the current status of the RHESSI spectral and imaging software, one year after launch. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/B:SOLA.0000021801.83038.aa  相似文献   

17.
We explore the correlations between the inferred reconnection rate and hard X-ray spectral hardness for two double-ribbon flares on 2003 November 1 and 2005 May 17 in this paper. The magnetic reconnection rate of φ rec is derived from the time rate of change of the product between the normal magnetic field and the newly brightened ribbon area of TRACE 1600 Å observations. And the spectral index of γ is derived from RHESSI hard X-ray data. Both events show a soft-hard-soft spectral behaviour in the rise-peak-decay phases. An anti-correlated behaviour is found between the time evolution of reconnection rate and spectral index. From the regression analysis, we obtain a negative power-law dependence and quantify the relationship between these two quantities. This is consistent with the simulation results before, and further confirms the importance of magnetic reconnection for the electron acceleration in solar flares.  相似文献   

18.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   

19.
The radio emission during 201 selected X-ray solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zürich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% are they the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.  相似文献   

20.
The degree of linear polarization in solar flares has not yet been precisely determined despite multiple attempts to measure it with different missions. The high energy range, in particular, has very rarely been explored, due to its greater instrumental difficulties. We approached the subject using the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) satellite to study six X-class and 1 M-class flares in the energy range between 100 and 350 keV. Using RHESSI as a polarimeter requires the application of strict cuts to the event list in order to extract those photons that are Compton scattered between two detectors. Our measurements show polarization values between 2 and 54%, with errors ranging from 10 to 26% in 1σ level. In view of the large uncertainties in both the magnitude and direction of the polarization vector, the results can only reject source models with extreme properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号