首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Using the isotopic compositions derived in Huss and Lewis, 1994a (Paper I), abundances of the P3, HL, and P6 noble-gas components were determined for 15 diamond separates from primitive chondrites of 8 chondrite classes. Within a meteorite class, the relative abundances of these components correlate with the petrologic subtype of the host meteorite, indicating that metamorphism is primarily responsible for the variations. Relative abundances of P3, HL, and P6 among diamond samples can be understood in terms of thermal processing of a single mixture of diamonds like those now found in CI and CM2 chondrites. With relatively gentle heating, primitive diamonds first lose their low-temperature P3 gases and a “labile” fraction of the HL component. Mass loss associated with release of these components produces an increase in the HL and P6 content of the remaining diamond relative to unprocessed diamond. Higher temperatures initiate destruction of the main HL carrier, while the HL content of the surviving diamonds remains essentially constant. At the same time, the P6 carrier begins to preferentially lose light noble gases. Meteorites that have experienced metamorphic temperatures ?650 °C have lost essentially all of their presolar diamond through chemical reactions with surrounding minerals. The P3 abundance seems to be a function only of the maximum temperature experienced by the diamonds and thus is independent of the nature of the surrounding environment. If all classes inherited the same mixture of primitive diamonds, then P3 abundances would tie together the metamorphic scales in different meteorite classes. However, if the P3 abundance indicates a higher temperature than do other thermometers applicable to the host meteorite, then the P3 abundance may contain information about heating prior to accretion. Diamonds in the least metamorphosed EH, CV, and CO chondrites seem to carry a record of pre-accretionary thermal processing.  相似文献   

2.
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established.  相似文献   

3.
Abstract– The Moss meteorite is the first CO chondrite fall after a time period of 70 yr and the least terrestrially contaminated member of its group. Its cosmic‐ray exposure (CRE) age (T3 ~ 13.5 Ma; T21 ~ 14.6 Ma) is distinct among CO chondrites and, within witnessed falls is the shortest after Lancé, which we have reanalyzed. Gas retention ages are approximately 3.95 × 109 yr (U/Th‐He) and approximately 4.43 × 109 yr (K/Ar), respectively. Trapped Ar, Kr, and Xe are present in Moss in abundances typical for CO chondrites, with “planetary” elemental and isotopic compositions. Presence of HL‐xenon from presolar diamonds is observed in the stepwise release analysis of Lancé. It may also be present in Moss, but it is difficult to ascertain in single‐step bulk analyses. It follows from our new data combined with a survey of the literature that the abundance of trapped gases in CO chondrites is not a good indicator of their petrological subtype.  相似文献   

4.
Abstract— Ar‐rich noble gases, the so‐called “subsolar” noble gases, are a major component of heavy primordial noble gases in unequilibrated ordinary chondrites and some classes of anhydrous carbonaceous chondrites, whereas they are almost absent in hydrous carbonaceous chondrites that suffered extensive aqueous alteration. To understand the effects of aqueous alteration on the abundance of Ar‐rich noble gases, we performed an aqueous alteration experiments on the Ningqiang type 3 carbonaceous chondrite that consists entirely of anhydrous minerals and contains Ar‐rich noble gases. Powdered samples and deionized neutral water were kept at 200 °C for 10 and 20 days, respectively. Mineralogical analyses show that, during the 10‐day alteration, serpentine and hematite formed at the expense of olivine, low‐Ca pyroxene, and sulfide. Noble gas analyses show that the 10‐day alteration of natural Ningqiang removed 79% of the primordial 36Ar, 68% of the 84Kr, and 60% of the 132Xe, but only 45% of the 4He and 53% of the primordial 20Ne. Calculated elemental ratios of the noble gases removed during the 10‐day alteration are in the range of those of Ar‐rich noble gases. These results indicate that Ar‐rich noble gases are located in materials that are very susceptible to aqueous alteration. In contrast, heavy primordial noble gases remaining in the altered samples are close to Q gas in elemental and isotope compositions. This indicates that phase Q is much more resistant to aqueous alteration than the host phases of Ar‐rich noble gases. In the 20‐day sample, the mineralogical and noble gas signatures are basically similar to those of the 10‐day sample, indicating that the loss of Ar‐rich noble gases was completed within the 10‐day alteration. Our results suggest that almost all of the Ar‐rich noble gases were lost from primitive asteroids during early, low‐temperature aqueous alteration.  相似文献   

5.
Abstract— We studied the elemental and isotopic abundances of noble gases (He, Ne, Ar in most cases, and Kr, Xe also in some cases) in individual chondrules separated from six ordinary, two enstatite, and two carbonaceous chondrites. Most chondrules show detectable amounts of trapped 20Ne and 36Ar, and the ratio (36Ar/20Ne)t (from ordinary and carbonaceous chondrites) suggests that HL and Q are the two major trapped components. A different trend between (36Ar/20Ne)t and trapped 36Ar is observed for chondrules in enstatite chondrites indicating a different environment and/or mechanism for their formation compared to chondrules in ordinary and carbonaceous chondrites. We found that a chondrule from Dhajala chondrite (DH‐11) shows the presence of solar‐type noble gases, as suggested by the (36Ar/20Ne)t ratio, Ne‐isotopic composition, and excess of 4He. Cosmic‐ray exposure (CRE) ages of most chondrules are similar to their host chondrites. A few chondrules show higher CRE age compared to their host, suggesting that some chondrules and/or precursors of chondrules have received cosmic ray irradiation before accreting to their parent body. Among these chondrules, DH‐11 (with solar trapped gases) and a chondrule from Murray chondrite (MRY‐1) also have lower values of (21Ne/22Ne)c, indicative of SCR contribution. However, such evidences are sporadic and indicate that chondrule formation event may have erased such excess irradiation records by solar wind and SCR in most chondrules. These results support the nebular environment for chondrule formation.  相似文献   

6.
Abstract— The HF/HCI‐resistant residues of the chondrites CM2 Cold Bokkeveld, CV3 (ox.) Grosnaja, CO3.4 Lancé, CO3.7 Isna, LL3.4 Chainpur, and H3.7 Dimmitt have been measured by closed‐system stepped etching (CSSE) in order to better characterise the noble gases in “phase Q”, a major carrier of primordial noble gases. All isotopic ratios in phase Q of the different meteorites are quite uniform, except for (20Ne/22Ne)Q. As already suggested by precise earlier measurements (Schelhaas et al., 1990; Wieler et al., 1991, 1992), (20Ne/22Ne)Q is the least uniform isotopic ratio of the Q noble gases. The data cluster ~10.1 for Cold Bokkeveld and Lancé and 10.7 for Chainpur, Grosnaja, and Dimmitt, respectively. No correlation of (20Ne/22Ne)Q with the classification or the alteration history of the meteorites has been found. The Ar, Kr, and Xe isotopic ratios for all six samples are identical within their uncertainties and similar to earlier Q determinations as well as to Ar‐Xe in ureilites. Thus, an unknown process probably accounts for the alteration of the originally incorporated Ne‐Q. The noble gas elemental compositions provide evidence that Q consists of at least two carbonaceous carrier phases “Q1” and “Q2” with slightly distinct chemical properties. Ratios (Ar/Xe)Q and (Kr/Xe)Q reflect both thermal metamorphism and aqueous alteration. These parent‐body processes have led to larger depletions of Ar and Kr relative to Xe. In contrast, meteorites that suffered severe aqueous alteration, such as the CM chondrites, do not show depletions of He and Ne relative to Ar but rather the highest (He/Ar)Q and (Ne/Ar)Q ratios. This suggests that Q1 is less susceptible to aqueous alteration than Q2. Both subphases may well have incorporated noble gases from the same reservoir, as indicated by the nearly constant, though very large, depletion of the lighter noble gases relative to solar abundances. However, the elemental ratios show that Q1 and Q2 must have acquired (or lost) noble gases in slightly different element proportions. Cold Bokkeveld suggests that Q1 may be related to presolar graphite. Phases Q1 and Q2 might be related to the subphases that have been suggested by Gros and Anders (1977). The distribution of the 20Ne/22Ne ratios cannot be attributed to the carriers Q1 and Q2. The residues of Chainpur and Cold Bokkeveld contain significant amounts of Ne‐E(L), and the data confirm the suggestion of Huss (1997) that the 22Ne‐E(L) content, and thus the presolar graphite abundances, are correlated with the metamorphic history of the meteorites.  相似文献   

7.
Abstract— The trapped noble gas record of 57 enstatite chondrites (E chondrites) has been investigated. Basically, two different gas patterns have been identified dependent on the petrologic type. All E chondrites of type 4 to 6 show a mixture of trapped common chondritic rare gases (Q) and a subsolar component (range of elemental ratios for E4–6 chondrites: 36Ar/132Xe = 582 ± 270 and 36Ar/84Kr = 242 ± 88). E3 chondrites usually contain Q gases, but also a composition with lower 36Ar/132Xe and 36Ar/84Kr ratios, which we call sub‐Q (36Ar/132Xe = 37.0 ± 18.0 and 36Ar/84Kr = 41.7 ± 18.1). The presence of either the subsolar or the sub‐Q signature in particular petrologic types cannot be readily explained by parent body metamorphism as postulated for ordinary chondrites. We therefore present a different model that can explain the bimodal distribution and composition of trapped heavy noble gases in E chondrites. Trapped solar noble gases have been observed only in some E3 chondrites. About 30% of each group, EH3 and EL3 chondrites, amounting to 9% of all analyzed E chondrites show the solar signature. Notably, only one of those meteorites has been explicitly described as a regolith breccia.  相似文献   

8.
There are two types of planetary noble gases: One, containing isotopically “anomalous” argon, krypton and xenon but isotopically “normal” helium and neon, was derived from outer stellar regions. The other, consisting almost entirely of isotopically “normal” argon, krypton and xenon, with little or no helium or neon, was derived from inner stellar regions. Mixing of nucleosynthesis products from different regions of a supernova is responsible for the observed correlations between elemental and isotopic ratios of planetary noble gases in different classes of meteorites. The solar system condensed directly from the chemically and isotopically heterogeneous debris of a single supernova. There is no convincing evidence, however, of separate nucleogenetic components in neon. Fractionation and spallation can account for all previously identified components of trapped meteoritic neon, Ne-A, Ne-B, Ne-C, Ne-D, Ne-E, Ne-Al, Ne-A2, Ne-E(L), Ne-E(H) and Ne-O, and this same mechanism also explains differences between the isotopic compositions of meteoritic, atmospheric, and solar wind neon. Variations in the abundance pattern of planetary noble gases are primarily the result of stellar fusion reactions and physical adsorption, rather than gas solubility.  相似文献   

9.
The radiogenic and primordial noble gas content of the atmospheres of Venus, Earth, and Mars are compared with one another and with the noble gas content of other extraterrestial samples, especially meteorites. The fourfold depletion of 40Ar for Venus relative to the Earth is attributed to the outgassing rates and associated tectonics and volcanic styles for the two planets diverging significantly within the first billion or so years of their history, with the outgassing rate for Venus becoming much less than that for the Earth at subsequent times. This early divergence in the tectonic style of the two planets may be due to a corresponding early onset of the runaway greenhouse on Venus. The 16-fold depletion of 40Ar for Mars relative to the Earth may be due to a combination of a mild K depletion for Mars, a smaller fraction of its interior being outgassed, and to an early reduction in its outgassing rate. Venus has lost virtually all of its primordial He and some of its radiogenic He. The escape flux of He may have been quite substantial in Venus' early history, but much diminished at later times, with this time variation being perhaps strongly influenced by massive losses of H2 resulting from efficient H2O loss processes.Key trends in the primordial noble gas content of terrestial planetary atmospheres include (1) a several orders of magnitude decrease in 20Ne and 36Ar from Venus to Earth to Mars; (2) a nearly constant 20Ne/36Ar ratio which is comparable to that found in the more primitive carbonaceous chondrites and which is two orders of magnitude smaller than the solar ratio; (3) a sizable fractionation of Ar, Kr, and Xe from their solar ratios, although the degree of fractionation, especially for 36Ar/132Xe, seems to decrease systematically from carbonaceous chondrites to Mars to Earth to Venus; and (4) large differences in Ne and Xe isotopic ratios among Earth, meteorites, and the Sun. Explaining trends (2), (2) and (4), and (1) pose the biggest problems for the solar-wind implantation, primitive atmosphere, and late veneer hypotheses, respectively. It is suggested that the grain-accretion hypothesis can explain all four trends, although the assumptions needed to achieve this agreement are far from proven. In particular, trends (1), (2), (3), and (4) are attributed to large pressure but small temperature differences in various regions of the inner solar system at the times of noble gas incorporation by host phases; similar proportions of the host phases that incorporated most of the He and Ne on the one hand (X) and Ar, Kr, and Xe on the other hand (Q); a decrease in the degree of fractionation with increasing noble-gas partial pressure; and the presence of interstellar carriers containing isotopically anomalous noble gases.Our analysis also suggests that primordial noble gases were incorporated throughout the interior of the outer terrestial planets, i.e., homogeneous accretion is favored over inhomogeneous accretion. In accord with meteorite data, we propose that carbonaceous materials were key hosts for the primordial noble gases incorporated into planets and that they provided a major source of the planets' CO2 and N2.  相似文献   

10.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   

11.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

12.
Abstract— A fine‐grained dark inclusion in the Ningqiang carbonaceous chondrite consists of relatively pristine solar nebular materials and has high concentrations of heavy primordial rare gases. Trapped 36Ar concentration amounts to 6 times 10?6 cc STP/g, which is higher than that of Ningqiang host by a factor of three. Light HF‐HCl etching of the dark inclusion removed 86, 73, and 64% of the primordial 36Ar, 84Kr, and 132Xe, respectively. Thus, the majority of the noble gases in this inclusion are located in very acid‐susceptive material. Based on the elemental composition, the noble gases lost from the dark inclusion during the acid‐treatments are Ar‐rich, and the noble gases remaining in the inclusion are Q and HL gases. Transmission electron microscopy showed that the acid treatments removed thin Si, Mg, and Fe‐rich amorphous rims present around small olivine and pyroxene grains in the dark inclusion, suggesting that the Ar‐rich gases reside in the amorphous layers. A possible origin of the Ar‐rich gases is the acquisition of noble‐gas ions with a composition fractionated relative to solar abundance favoring the heavy elements by the effect of incomplete ionization under plasma conditions at 8000 K electron temperature.  相似文献   

13.
Abstract— In this paper, we present concentration and isotopic composition of the light noble gases He, Ne, and Ar as well as of 84Kr, 132Xe, and 129Xe in bulk samples of 33 Rumuruti (R) chondrites. Together with previously published data of six R chondrites, exposure ages are calculated and compared with those of ordinary chondrites. A number of pairings, especially between those from Northwest Africa (NWA), are suggested, so that only 23 individual falls are represented by the 39 R chondrites discussed here. Eleven of these meteorites, or almost 50%, contain solar gases and are thus regolithic breccias. This percentage is higher than that of ordinary chondrites, howardites, or aubrites. This may imply that the parent body of R chondrites has a relatively thick regolith. Concentrations of heavy noble gases, especially of Kr, are affected by the terrestrial atmospheric component, which resides in weathering products. Compared to ordinary chondrites, 129Xe/132Xe ratios of R chondrites are high.  相似文献   

14.
Abstract— We have used radiochemical neutron activation analysis (RNAA) to determine 15 trace elements, including 10 moderately to highly volatile ones—Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl, In (in increasing volatility order), in 6 H chondrite falls with low-3He contents. These (plus prior RNAA data) provide a compositional database of 92 H4-6 chondrite falls. Three suites of samples can be identified from their noble gas contents: 44 with “normal” contents and, therefore, “normal” orbits and cosmic-ray exposure histories; 8 that lost radiogenic gases, presumably by shock late in their histories; and 17 that lost cosmogenic gases by heating during close solar approach. We used the standard multivariate statistical techniques of linear discriminant analysis and logistic regression to compare contents of the 10 moderately and highly volatile trace elements, listed above, in these three suites. We found no significant differences. This contrasts sharply with similar comparisons involving random falls and H4-6 chondrites that landed on Earth at specific time intervals. Apparently, contents of volatile trace elements in H4-6 chondrites were established early in their histories, and they are so retentively sited that loss during later heating episodes did not occur.  相似文献   

15.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

16.
Abstract Solar noble gases He, Ne, Ar and Kr implanted in the H3–6 meteorite regolith breccia Acfer 111 agree in their elemental composition with that in present-day solar wind and, except for a 25% deficit of 4He, also with adopted solar abundances. The presence of such unfractionated solar gases makes Acfer 111 unique (until now). Closed system stepped etching releases noble gases that can be explained as mixtures of two distinct types of He, Ne, and Kr of isotopic compositions as they have been derived previously from meteorites and lunar samples that contain heavily fractionated solar gases. Since the same putative end members, ascribed to the solar wind (SW) and supra-thermal solar energetic particles (SEP), are also present in Acfer 111, we argue that these end members represent two truly independent components. We discount the possibility that one isotopic composition derived from the other by diffusion of the gases within, or upon their release from, their host phases. The isotopic signatures of noble gases in Acfer 111 agree with those in a lunar ilmenite of young antiquity ?100 Ma) but are in disagreement with the noble gases in lunar ilmenite 79035 of 1–2 Ga antiquity. Systematic changes are discussed of the nuclide abundance ratios as etching proceeds; they are ascribed to differences in trapping efficiency and in penetration depth of the different noble gas ion species upon their implantation.  相似文献   

17.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   

18.
Oliver K. Manuel 《Icarus》1980,41(2):312-315
Isotopically anomalous xenon in chondrites is closely associated with low-Z noble gases, but there is no helium (or neon) in the noble gas component with normal xenon. The correlation of elemental and isotopic heterogeneities in meteoritic noble gases places stringent limits on the origin of isotopically anomalous elements in meteorites and on the formation of the solar system.  相似文献   

19.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

20.
Abstract‐ Noble gases have been measured in meteorites for more than 100 years. The last 50 years have been especially fruitful, with concentration and isotopic compositional analysis of He, Ne, Ar, Kr, and Xe making important contributions to meteorite research. Differently trapped noble gas components are the basis for understanding planetary atmospheres and even different stages of stellar evolution. Noble gases are a valuable tool to detect pairing of meteorite specimens or even to prove whether a rock is a meteorite or not. Noble gas data, however, are distributed over a large number of publications. Sometimes, only concentrations are given for selected isotopes or just a simple derivative quantity is published. We have tried to collect all available measurements of He, Ne, and Ar in meteorites. Here, we present the data in a form that will help easily calculate isotopic or elemental ratios for selected measurements. The present compilation contains all data available as of March 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号