首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— Galim is a polymict breccia consisting of a heavily shocked (shock stage S6) LL6 chondrite, Galim (a), and an impact-melted EH chondrite, Galim (b). Relict chondrules in Galim (b) served as nucleation sites for euhedral enstatite grains crystallizing from the impact melt. Many of the reduced phases typical of EH chondrites (e.g., Si-bearing metallic Fe-Ni; Ti-bearing troilite) are absent. Galim (b) was probably shock-melted while in contact with a more oxidized source, namely, Galim (a); during this event, Si was oxidized from the metal and Ti was oxidized from troilite. Galim (a) contains shock veins and recrystallized, unzoned olivine. The absence of evidence for reduction in Galim (a) may indicate that the amount of LL material greatly exceeded that of EH material; shock metamorphism may have taken place on the LL parent body. Shock-induced redox reactions such as those inferred for the Galim breccia appear to be restricted mainly to asteroids because the low-end tail of their relative-velocity distribution permits mixing of intact disparate materials (including accretion of projectiles of different oxidation states), whereas the peak of the distribution leads to high equilibration shock pressures (allowing impact-induced exchange between previously accreted, disequilibrated materials). Galim probably formed by a two-stage process: (1) accretion to the LL parent body of an intact EH projectile at low relative velocities, and (2) shock metamorphism of the assemblage by the subsequent impact of another projectile at significantly higher relative velocities.  相似文献   

2.
We determined the shock‐darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post‐shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock‐darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not‐shock‐related triggers for iron melt.  相似文献   

3.
Abstract— –Literature data show that, among EH chondrites, the Abee impact‐melt breccia exhibits unusual mineralogical characteristics. These include very low MnO in enstatite (<0.04 wt%), higher Mn in troilite (0.24 wt%) and oldhamite (0.36 wt%) than in EH4 Indarch and EH3 Kota‐Kota (which are not impact‐melt breccias), low Mn in keilite (3.6–4.3 wt%), high modal abundances of keilite (11.2 wt%) and silica (~7 wt%, but ranging up to 16 wt% in some regions), low modal abundances of total silicates (58.8 wt%) and troilite (5.8 wt%), and the presence of acicular grains of the amphibole, fluor‐richterite. These features result from Abee's complex history of shock melting and crystallization. Impact heating was responsible for the loss of MnO from enstatite and the concomitant sulfidation of Mn. Troilite and oldhamite grains that crystallized from the impact melt acquired relatively high Mn contents. Abundant keilite and silica also crystallized from the melt; these phases (along with metallic Fe) were produced at the expense of enstatite, niningerite and troilite. Melting of the latter two phases produced a S‐rich liquid with higher Fe/Mg and Fe/Mn ratios than in the original niningerite, allowing the crystallization of keilite. Prior to impact melting, F was distributed throughout Abee, perhaps in part adsorbed onto grain surfaces; after impact melting, most of the F that was not volatilized was incorporated into crystallizing grains of fluor‐richterite. Other EH‐chondrite impact‐melt breccias and impact‐melt rocks exhibit some of these mineralogical features and must have experienced broadly similar thermal histories.  相似文献   

4.
Abstract— Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and IIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilites are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e., Al-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, lherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic phases were formed by shock metamorphism. Martensite (α2-Fe,Ni) has a distorted body-centered-cubic structure and formed by a shear transformation from taenite during shock reheating and rapid cooling. The C polymorphs diamond, lonsdaleite and chaoite formed by shock from graphite. Suessite formed in the North Haig ureilite by reduction of Fe and Si (possibly from olivine) via reaction with carbonaceous matrix material. Ringwoodite, the spinel form of (Mg,Fe)2SiO4, and majorite, a polymorph of (Mg,Fe)SiO3 with the garnet structure, formed inside shock veins in highly shocked ordinary chondrites. Secondary minerals in meteorite finds that formed during terrestrial weathering include oxides and hydroxides formed directly from metallic Fe-Ni by oxidation, phosphates formed by the alteration of schreibersite, and sulfates formed by alteration of troilite.  相似文献   

5.
Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group   总被引:1,自引:0,他引:1  
Abstract— Pecora Escarpment (PCA)91002 is a light/dark-structured chondrite breccia related to Carlisle Lakes and Rumuruti; the meteorite contains ~10–20 vol% equilibrated (type ?5 and ?6) clasts within a clastic groundmass, much of which was metamorphosed to type-3.8 levels. The olivine compositional distribution forms a tight cluster that peaks at Fa38–40; by contrast, low-Ca pyroxene compositions are highly variable. Opaque phases identified in PCA91002 and its paired specimen, PCA91241, include pyrrhotite, pentlandite, pyrite, chromite, ilmenite, metallic Cu and magnetite. The majority of the rock is of shock stage S3-S4; there are numerous sulfide-rich shock veins and 50-μm plagioclase melt pockets. Instrumental neutron activation analysis shows that, unlike Carlisle Lakes and ALH85151, PCA91002 exhibits no Ca enrichment or Au depletion; because PCA91002 is relatively unweathered, it seems probable that the Ca and Au fractionations in Carlisle Lakes and ALH85151 were caused by terrestrial alteration. The Rumuruti-like (formerly Carlisle-Lakes-like) chondrites now include eight separate meteorites. Their geochemical and petrographic similarities suggest that they constitute a distinct chondrite group characterized by unfractionated refractory lithophile abundances (0.95 ± 0.05x CI), high bulk Δ17O, a low chondrule/groundmass modal abundance ratio, mean chondrule diameters in the 400 ± 100 μm range, abundant NiO-bearing ferroan olivine, sodic plagioclase, titanian chromite, abundant pyrrhotite and pentlandite and negligible metallic Fe-Ni. We propose that this group be called R chondrites after Rumuruti, the only fall. The abundant NiO-bearing ferroan olivine grains, the occurrence of Cu-bearing sulfide, and the paucity of metallic Fe-Ni indicate that R chondrites are highly oxidized. It is unlikely that appreciable oxidation took place on the parent body because of the essential lack of plausible oxidizing agents (e.g., magnetite or hydrated silicates). Therefore, oxidation of R chondrite material must have occurred in the nebula. A few type-I porphyritic olivine chondrules containing olivine grains with cores of Fa3–4 composition occur in PCA91002; these chondrules probably formed initially as metallic-Fe-Ni-bearing objects at high nebular temperatures. As temperatures decreased and more metallic Fe was oxidized, these chondrules accreted small amounts of oxidized material and were remelted. The ferroan compositions of the >5-μm olivine grains in the R chondrites reflect equilibration with fine-grained FeO-rich matrix material during parent body metatnorphism.  相似文献   

6.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

7.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

8.
Abstract— Six large millimeter‐ to centimeter‐size regions of one specimen of the Krymka LL3.1 ordinary chondrite show evidence of having been completely or nearly completely shock‐melted in situ, a phenomenon rarely observed in primitive chondrites. The shock pressure, nominally in the range of 75–90 GPa, could only have been 30–35 GPa in a porous material like fine‐grained matrix. The melted regions have an igneous texture and their silicates are zoned and unequilibrated. Large metal‐troilite intergrowths formed in these regions. The metal has a nickel content corresponding to martensite and the troilite contains up to 4.2 wt% nickel. Melting must have been very short and cooling very fast (>100 °C/h at high temperature). The metal contains up to 0.7 wt% phosphorus. Abundant chromite crystals and sodium‐iron phosphate glass globules are found in troilite. The differences in composition between the opaque phases found in the melted regions and those generally observed in unmetamorphosed chondrules are assigned to melting under closed system conditions. Surprisingly high Co concentrations (up to 13 wt%) were found in some metal grains in or at the periphery of melted regions. They likely resulted from sulfurization of metal by sulfur vapor produced during the shock. After solidification, at least one other shock led to mechanical effects in the melted regions.  相似文献   

9.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

10.
We studied textures and compositions of sulfide inclusions in unzoned Fe,Ni metal particles within CBa Gujba, CBa Weatherford, CBb HH 237, and CBb QUE 94411 in order to constrain formation conditions and secondary thermal histories on the CB parent body. Unzoned metal particles in all four chondrites have very similar metal and sulfide compositions. Metal particles contain different types of sulfides, which we categorize as: homogeneous low‐Cr sulfides composed of troilite, troilite‐containing exsolved daubreelite lamellae, arcuate sulfides that occur along metal grain boundaries, and shock‐melted sulfides composed of a mixture of troilite and Fe, Ni metal. Our model for formation proposes that the unzoned metal particles were initially metal droplets that formed from splashing by a partially molten impacting body. Sulfide inclusions later formed as a result of precipitation of excess S from solid metal at low temperatures, either during single stage cooling or during a reheating event by impacts. Sulfides containing exsolution lamellae record temperatures of ?600 °C, and irregular Fe‐FeS intergrowth textures suggest localized shock melting, both of which are indicative of heterogeneous heating by impact processes on the CB parent body. Our study shows that CBa and CBb chondrites formed in a similar environment, and also experienced similar secondary impact processing.  相似文献   

11.
Abstract— The Ilafegh 009 meteorite is an impact melt rock from an EL-chondritic parent body. Its mineralogic assemblage is the result of rapid crystallization after shock-induced melting. We report here an analytical transmission electron microscopy (ATEM) study of the major minerals of this meteorite (enstatite, plagioclase, Fe-Ni metal and sulfides). Based on this study, we discuss the crystallization sequence and the further evolution of the rock in the solid state. Microstructure and microanalyses confirm that the mineralogy of Ilafegh 009 results from the crystallization of an EL-chondritic melt. The high compositional variability of plagioclases and the presence of silica-rich glass pockets indicate fast cooling. During crystallization, the large enstatite grains trapped a large number of phases (plagioclase, silica-rich glass and enstatite nuclei). Sulfides (troilite, alabandite and daubreelite) form finely polycrystalline areas and reveal a complex crystallization sequence. Although Fe-Ni metal grains formed during rapid cooling, their microstructures show that some postsolidification process occurred in Ilafegh 009. A large number of tiny Ni-P-Si-rich precipitates were detected that formed as a result of exsolution of elements that become insoluble in kamacite at low temperature. Finally, the microstructure (dislocation arrangements and phase transformations) observed in enstatite and Fe-Ni metal attests that Ilafegh 009 also experienced a moderate postsolidification shock event.  相似文献   

12.
Abstract— CK carbonaceous chondrites contain rare (~0.1 vol%) magnetite-sulfide chondrules. These objects range from ~240 to 500 μm in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures and concentric layering. They are very similar in size, shape, texture, mineralogy and mineral composition to the magnetite-sulfide nodules which occur inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration; otherwise, the factor of two increase in molar volume associated with the conversion of metallic Fe-Ni into magnetite would have disrupted the objects and destroyed their concentrically layered textures. Hence, the pervasive silicate darkening of CK chondrites documented previously was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.  相似文献   

13.
Abstract— A large number of ordinary chondrites contains micron-sized particles of metal and/or troilite dispersed in their silicate grains. Such metallic phases are responsible for the so-called darkening of the silicate grains and might be either precipitates, which formed during reduction of the silicates, or inclusions injected as a melt during a shock event. We have investigated these tiny foreign phases by analytical transmission electron microscopy in three unweathered, metamorphosed ordinary chondrites (Saint Séverin, LL6, Tsarev, L6 and Kernouvé, H6). We also looked for remnant shock indices. Our TEM observations suggest the following sequence of events in the three meteorites. First, a number of relatively strong shock events occurred on the parent body/bodies producing an Fe-FeS melt that was injected into silicate grains along a dense network of open fractures. Most of these shock defects were subsequently erased by high-temperature (700–900 °C) thermal metamorphism. Some remnants of the shock events are the observed trails of tiny metal and/or sulfide inclusions that formed as a result of fracture healing. Chemical homogenization of the silicates and limited oxidation of the metallic blebs also occurred during this high-temperature annealing event, resulting in Ni-rich inclusions. This effect was especially pronounced in the L and LL-chondrites studied. During subsequent cooling of the body/bodies, inclusions of chromite and phosphate precipitated, nucleating preferentially on lattice defects (dislocations, subgrain boundaries) and on the metal and sulfide inclusions. A later shock event of moderate intensity, probably corresponding to the separation of the meteorite from its parent body, produced new shock features in the silicate grains of the Saint Séverin meteorite, including mechanical twins in diopside and straight free screw dislocations in olivine.  相似文献   

14.
Haverö consists of large olivine areas with a pavement structure and single crystals of twinned clinopyroxene. Black veins with sharp boundaries traverse the silicates. They contain graphite, diamond, and kamacite. In olivine a reaction rim is formed around these veins containing Ni-poor metal and showing a lower FeO content than farther away from the vein. The CaO content of olivine and pyroxene, 0.27% and 1.7%, respectively, are higher than in these minerals in normal chondrites. The mole percent Fe + Ca/Fe + Ca + Mg in unchanged olivine and in pyroxene agree with the range of L-chondrites. Metal occurs in three types: a, larger grains in the course of the black veins, they contain 2 to 3% Ni; b, micron-sized grains inside the black veins and its reaction rim; c, medium-sized grains with ~0.7% Ni in olivine The interpretation of these observations is: a material similar to an L-chondrite was reheated and recrystallized (at this time it may have lost its feldspar, metal and troilite by partial melting), Ca was redistributed and partly retained in olivine and pyroxene due to rapid cooling, a late introduction of carbon into veins caused a partial reduction of FeO in olivine and formation of Ni-poor metal  相似文献   

15.
Abstract— Lewis Cliff 85332 (LEW85332) is a highly unequilibrated (type 3.0–3.1) unique carbonaceous chondrite. It resembles CI and “CR” chondrites in its abundance ratios of refractory lithophiles and refractory siderophiles, but differs significantly from these groups in important ways: relative to CI chondrites, LEW85332 has low abundances of Mn, Se, Zn and most volatile siderophiles; relative to “CR” chondrites, LEW85332 has high abundance ratios of Mn and most volatile siderophiles. Although several petrologic characteristics of LEW85332 resemble those of CO chondrites, LEW85332 differs from this group in having lower abundance ratios of refractory lithophiles and higher abundance ratios of common and volatile siderophiles. Chondrules (mean diameter of 170 μm) are smaller than those in CV and CM chondrites and bigger than those in most CO chondrites. Two melilite-rich (Åk 22) fluffy type-A refractory inclusions were observed. Weathering of LEW85332 has resulted in the formation of 6.2 vol.% limonite; 3.9 vol.% metallic Fe-Ni remains. The inferred original metallic Fe-Ni abundance (13–15 wt.%) is very high for a carbonaceous chondrite and is most similar to those of Kainsaz and Colony (both CO3). LEW85332 is a breccia: the one thin section we examined contains (a) ≥ 10 primitive carbonaceous chondrite clasts (with both C1 and C2 affinities) that contain magnetite framboids and platelets, (b) two clasts containing numerous 10-μm-size clusters of troilite grains, and (c) one clast containing small needles of schreibersite embedded in fine-grained silicate matrix. The unique nature of LEW85332 underscores the wide diversity of materials produced in the solar nebula.  相似文献   

16.
Abstract— Shock metamorphic features in opaque minerals (FeNi metal and troilite) of 22 L chondrites have been studied petrographically and geochemically in an attempt to establish a connection between the present silicate-based shock classification scheme (Stöffler et al., 1991) and the peak-shock and postshock thermal history recorded in these minerals. Unshocked to weakly shocked (S1–S3) L chondrites contain FeNi metal and troilite that display textures related to normal, slow cooling. They may also contain rare disequilibrium shock features, which suggest localized departures from equilibrium shock conditions. Above shock stage S3, selected melting of FeNi metal and troilite produces melt droplets whose composition and abundance correspond to the maximum equilibrium shock state achieved by the sample. At these higher shock levels, the abundance of other shock-induced features, such as polycrystalline kamacite, sheared and fizzed troilite, coarse-grained pearlitic plessite, polycrystalline troilite, and polymineralic melt veins serve as textural criteria that can be used to establish peak-shock conditions. Minimum postshock temperatures obtained from analyses of plessite components show a systematic increase in temperature with an increase in shock stage, thereby providing additional information about the postshock thermal histories of L chondrites. At the highest shock levels recorded in L chondrites (S6 and above), melting and chemical homogenization of FeNi metal produces flattened Ni profiles that may partially to completely obscure any evidence for an earlier, slow-cooling history. All of these features serve as aids for shock classifying L chondrites as well as for quantifying minimum peak temperatures that resulted during shock metamorphism.  相似文献   

17.
Abstract— On July 21, 2002, a meteorite fall occurred over the Thuathe plateau of western Lesotho. The well‐defined strewn field covers an area of 1.9 times 7.4 km. Many of the recovered specimens display a brecciated texture with leucocratic, angular to subrounded clasts in a somewhat darker groundmass. Mineralogical and chemical data, as well as oxygen isotopic analysis, indicate that Thuathe is an H4/5, S2/3 meteorite, with local H3 or H6 character. A number of anomalous features include somewhat high Co contents of kamacite and taenite relative to normal H‐group chondrites. Oxygen isotopic data plot at the edge of the normal H chondrite data field. Variable contents of metallic mineral phases and troilite result in a heterogeneous bulk composition (e.g., with regard to Si, Fe, and Mg), resulting in a spread of major element ratios that is not consistent with previously accepted H‐group composition. Trace element abundances are generally consistent with H chondritic composition, and Kr and Xe isotopic data agree with an H4 classification for this meteorite. Noble gas analysis gave U, Th‐4He gas retention and K‐Ar ages typical for H chondrites; no major thermal event affected this material since ~3.7 Ga. The exposure age for Thuathe is 5 Ma, somewhat lower than for other H chondrites. Cosmogenic nuclide analysis indicates a pre‐atmospheric radius of this meteorite between 35 and 40 cm. In the absence of evidence for solar gases, we classify Thuathe as a fragmental breccia. Numerous narrow, black veins cut across samples of Thuathe and are the result of a brittle deformation event that also caused local melting, especially in portions rich in sulfide. The formation of these veinlets is not the result of locally enhanced shock pressures (i.e., of shock melting) but rather of shearing under brittle conditions with local, friction‐related temperature excursions causing melting mostly of Fe‐sulfide and FeNi‐metal but also, locally, of silicate minerals. Frictional temperature excursions must have attained values in excess of 1500 °C to permit complete melting of forsteritic olivine.  相似文献   

18.
Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide‐metal assemblage MS‐166 was found highly enriched in wüstite (Fe1‐xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe‐sulfide and minor amounts of the outer Ni‐rich portions of the originally zoned metal in MS‐166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite‐rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni‐rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS‐166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.  相似文献   

19.
Abstract— Transmission-electron-microscopy (TEM) and optical data suggest that chondrules in the Chainpur (LL3.4) chondrite experienced varied thermal and deformation histories prior to the final agglomeration of the meteorite. Chainpur may be regarded as an agglomerate or breccia that experienced little deformation or heating during and after the final accumulation and compaction of its constituents. One chondrule in Chainpur was impact-shocked to high pressures (~ 20–50 GPa), almost certainly prior to final agglomeration, either while it was an independent entity in space or while it was in the regolith of a parent body. However, most (>85%) of the chondrules in Chainpur were evidently not significantly shock-metamorphosed subsequent to their formation. The dearth of shock effects implies that most chondrules in Chainpur did not form by shock melting, although some chondrules may have formed by this process. Dusty-metal-bearing olivine grains, which are widely interpreted to have escaped melting during chondrule formation, contain moderate densities of dislocations (~ 108 cm?2). The dislocations in these grains were introduced before or during the last episode of melting in at least one chondrule. This observation can be explained if olivine was impact-deformed before or during chondrule formation, or if olivine was strained by reduction or thermally-induced processes during chondrule formation. Low-Ca pyroxene grains in chondrules are often strained. In most cases this strain probably arose as a by-product of polytype transformations (protoenstatite → clinoenstatite/orthoenstatite and clinoenstatite → orthoenstatite) that occurred during the igneous crystallization and static annealing of chondrules. Droplet chondrules with glassy mesostases were minimally annealed, consistent with an origin as relatively rapidly cooled objects in an unconfined, cold environment. Some irregular chondrules and at least one droplet chondrule were thermally metamorphosed prior to final agglomeration, either as a result of moderately slow cooling (~ 100 °C/hr) from melt temperatures (during autometamorphism) or as a result of reheating episodes. Two of the most annealed chondrules contain relatively abundant plagioclase feldspar, and one of these has a uniform olivine composition appropriate to that of an LL4 chondrite.  相似文献   

20.
Abstract— Shock defects in the most common silicate minerals of chondrites (olivine, pyroxenes and feldspars) have been investigated in detail, but there have been almost no studies of the shock defects in other components, like metal and sulfide. This probably stems from the fact that these latter phases are opaque in the optical microscope. The same reason explains why veins and melt pockets, which are constituted of microcrystalline or glassy phases (i.e., isotropic) are also poorly documented. We have investigated such phases by analytical transmission electron microscopy (ATEM) in two shocked chondrites, Tenham (L6) and Gaines County (H5). We have characterized shock defects in troilite very similar to those occurring in silicates (i.e., a mosaic texture and sets of straight and very narrow, ?10 nm, lamellae of amorphized FeS). There are many small regions in shocked chondrites that are composed of very fine grained (?1 μm) mixtures of metal and sulfide or of various silicates. They must result from local melting followed by a rapid cooling that prevented grain growth. We have determined the chemical compositions and the volume proportions of the tiny grains in these veins and melt pockets, which has allowed their temperature and pressure (T, P) history to be partially deciphered. Finally, we have observed a dense network of very narrow fractures (down to 10 nm) in the olivine and enstatite grains. These fractures are systematically filled with an amorphous (or cryptocrystalline) material that stems from the melt pockets and was injected when the fractures were opened by the rarefaction wave. This material was then quenched at the contact with the colder crystalline rims.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号