首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Having been in use at Hohenpeissenberg from 1781–1841, the Palatina thermometer was found to suffer from a positive bias of 0.5°R (or 0.63°C) as discovered by Lamont following a re-calibration made in 1842. The main reason was due to the composition of the glass used during the early instrumental period. Glass of this period tended to contract over many years due to thermal aftereffects, resulting in a gradual rise of the freezing point position in consequence of the shrinking bulb forming the mercury reservoir. While the problem of the gradually rising zero point was recognised relatively early, the reason was attributed to wrong causes. Around 1880, scientists recognised that the chemical composition of glass might be responsible for the drift of the zero point. New glass types were developed which were free from such effects. Although these facts became known, no correction was applied to the Hohenpeissenberg temperature series when in 1981, the complete 200-year series was published. Most probably this bias is also relevant for other stations, at least those of the network of the Societas Meteorologica Palatina that were supplied with thermometers manufactured in Mannheim. Another problem originates from the different observing times for the period 1879–1900, which were set to 0800, 1400 and 2000 hours instead of 0700, 1400 and 2100 hours before and afterwards. In addition, a new formula to calculate the daily mean was established resulting in the temperature being too low by 0.5°C in that period. The overall trend changes after application of the two necessary corrections. There remain two biases that cannot be quantified without a major detailed study being made: (1) At the start of the observations, the window of the observation room was always kept “open during dry weather”. It is not known how long this practice was remained in use. (2) Lamont also employed an easily melting glass to construct his thermometers which in use between 1841 and 1878. An analysis of the glass composition seems to be necessary to find out whether it also suffered from a rising freezing point. Lamont replaced the Hohenpeissenberg thermometer in 1842 by a new instrument produced in his own workshop. One still existing Lamont thermometer, but not that one of Hohenpeissenberg, was re-calibrated and the zero point found to have lowered by ?1.4°C. Since the opposite drift had been expected and the original Lamont-type Hohenpeissenberg thermometer is no longer available, no correction is justified for the period in which this thermometer was in use.  相似文献   

3.
Reducing emissions from deforestation and degradation (REDD+) is an important component of the Paris Agreement. Inclusive decision making is essential to ensure REDD outcomes, but there is limited anecdotal and empirical evidence demonstrating that stakeholder participation in REDD+ decision making has improved over time. This paper presents an analysis of the Vietnamese government’s claim that stakeholder participation in REDD+ had been improved over the course of 2011–2019, specifically focusing on various actors’ perceptions of their level of interest, engagement and influence in REDD+ policy events. Findings show that the country’s legal framework on REDD+ demonstrated Vietnam’s political commitment to improve inclusive decision making, and initial effort was made to provide political space for actors to engage in REDD+ decision making. However, momentum has been lost over time. This suggests that understanding the political context, addressing underlying power dynamics in the existing government regime, building up coalitions for change among political elites and civil society, and fostering sustainable political will and commitment are all essential to ensuring inclusive REDD+ decision making in Vietnam.  相似文献   

4.
The present study is about the analysis of mean maximum and mean minimum temperatures carried out on annual, seasonal, and monthly timescales examining the data from 15 meteorological stations in Bangladesh for the period 1961–2008. Various spatial and statistical tools were used to display and analyze trends in temperature data. ArcGIS was used to produce the spatially distributed temperature data by using Thiessen polygon method. The nonparametric Mann–Kendall test was used to determine whether there is a positive or negative trend in data with their statistical significance. Sen’s method was also used to determine the magnitude of the trends. The results reveal positive trends in annual mean and mean maximum temperatures with 95 % significance. Trend test reveals that the significant positive trend is found in June to November in case of mean maximum temperature, but according to the mean minimum temperature, the situation is different and a significant positive trend was found from November to February. The analysis of the whole record reveals a tendency toward warmer years, with significantly warmer summer periods and slightly colder winters. These warming patterns may have important impacts on energy consumption, water supply, human health, and natural environment in Bangladesh.  相似文献   

5.
6.
Climatology, trends and variability of cloud fraction cover (CFC) data over the Arctic (north of 70°N), were analysed over the 1982–2009 period. Data, available from the Climate Monitoring Satellite Application Facility (CM SAF), are derived from satellite measurements by AVHRR. Climatological means confirm permanent high CFC values over the Atlantic sector during all the year and during summer over the eastern Arctic Ocean. Lower values are found in the rest of the analysed area especially over Greenland and the Canadian Archipelago, nearly continuously during all the months. These results are confirmed by CFC trends and variability. Statistically significant trends were found during all the months over the Greenland Sea, particularly during the winter season (negative, less than ?5?%?dec ?1) and over the Beaufort Sea in spring (positive, more than +5?%?dec ?1). CFC variability, investigated by the Empirical Orthogonal Functions, shows a substantial “non-variability” in the Northern Atlantic Ocean. Statistically significant correlations between CFC principal components elements and both the Pacific Decadal Oscillation index and Pacific North America patterns are found.  相似文献   

7.

In this study we present the seasonal chemical characteristics and potential sources of PM10 at an urban location of Delhi, India during 2010?2019. The concentrations of carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM10 were estimated to explore their possible sources. The annual average concentration (2010–2019) of PM10 was computed as 227?±?97 µg m?3 with a range of 34?734 µg m?3. The total carbonaceous aerosols in PM10 was accounted for 22.5% of PM10 mass concentration, whereas elements contribution to PM10 was estimated to be 17% of PM10. The statistical analysis of OC vs. EC and OC vs. WSOC of PM10 reveals their common sources (biomass burning and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM10 indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) extracted the five major sources [industrial emission (IE), biomass burning?+?fossil fuel combustion (BB?+?FFC), soil dust, vehicular emissions (VE) and sodium and magnesium salts (SMS)] of PM10 in Delhi, India. Back trajectory and cluster analysis of airmass parcel indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, Arabian Sea and Bay of Bengal.

  相似文献   

8.
This article builds on the previous studies on storminess conditions in the northeast North Atlantic–European region. The period of surface pressure data analyzed is extended from 1881–1998 to 1874–2007. The seasonality and regional differences of storminess conditions in this region are also explored in more detail. The results show that storminess conditions in this region have undergone substantial decadal or longer time scale fluctuations, with considerable seasonal and regional differences. The most notable differences are seen between winter and summer, and between the North Sea area and other parts of the region. In particular, winter storminess shows an unprecedented maximum in the early 1990s in the North Sea area and a steady upward trend in the northeastern part of the region, while it appears to have declined in the western part of the region. In summer, storminess appears to have declined in most parts of this region. In the transition seasons, the storminess trend is characterized by increases in the northern part of the region and decreases in the southeastern part, with increases in the north being larger in spring. In particular, the results also show that the earliest storminess maximum occurred in summer (around 1880), while the latest storminess maximum occurred in winter (in the early 1990s). Looking at the annual metrics alone (as in previous studies), one would conclude that the latest storminess maximum is at about the same level as the earliest storminess maximum, without realizing that this is comparing the highest winter storminess level with the highest summer storminess level in the period of record analyzed, while winter and summer storminess conditions have undergone very different long-term variability and trends. Also, storminess conditions in the NE Atlantic region are found to be significantly correlated with the simultaneous NAO index in all seasons but autumn. The higher the NAO index, the rougher the NE Atlantic storminess conditions, especially in winter and spring.  相似文献   

9.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

10.
Precipitation causes several short- and long-term effects on wind-induced surface erodibility and subsequent dust emission. Among the principal effects considered by this paper are soil moisture, soil crusts, and vegetation. A quantitative method is developed to assess these effects using differences between the potential and the actual amounts of dust emitted from dust sources as inferred from surface meteorological measurements obtained downwind from those sources. The results of this assessment must be interpreted with caution, however, when the size and location of dust sources are unknown.Using meteorological data recorded near Yuma, Arizona at the Yuma Marine Corps Air Station (YMCAS), the method is applied to calculate the potential and actual amounts of dust emitted from upwind dust sources during the spring and fall/winter seasons between January 1, 1981 and May 31, 1988. (Spring is considered to be the period between February 1 and May 31; fall/winter, between October 1 and January 31.) Because summer precipitation is intermittent and wind patterns are localized, summer meteorological data are not used to evaluate regional correlations between precipitation and dust storms. For the period between 1981 and 1988, a correlation of -0.60 was found between fall/winter precipitation and the actual amount of dust emitted from sources upwind of YMCAS during the following spring. A particularly strong reduction in dust emission was noted during the springs of 1983 and 1984 following the start of an El Nino event in fall/winter 1982. Photographs taken at a geological and meteorological data-collection (Geomet) site, located in the natural desert 25 km southeast of YMCAS, show a correspondence between increased antecedent precipitation recorded at the site and increased vegetation. Whereas the annual precipitation totals at YMCAS and the Geomet site from the beginning of 1982 through 1984 are high, their seasonal totals, especially during the fall/winter seasons, are disparate. This fall/winter precipitation disparity may account for evidence suggesting that significant vegetation growth occurred at dust sources upwind of YMCAS by spring 1983, but that such growth did not occur at the Geomet site until fall/ winter of 1983. Spatial inhomogeneity in fall/winter precipitation probably contributed to the relatively low correlation (-0.60) between fall/winter precipitation recorded at YMCAS and the actual amount of dust emitted from upwind sources during the following spring.  相似文献   

11.
The present study aims at studying the role played by high-frequency wind variability, wave reflection and easterly wind anomalies in the western Pacific in the onset, growth and termination phases of the 1997–1998 El Niño using the Trident intermediate coupled model and observations. While the anomalous strength of the trade winds in 1996 favored the initiation of a warm event in 1997 (via western Pacific boundary Rossby wave reflection), the actual timing of the onset and the amplitude of the event resulted from the large March 1997 wind event. Once initiated, high-frequency westerly winds strongly contributed to the rapid growth of the warm event and to the displacement of the eastern edge of the warm-pool. Moreover, both easterly and westerly high-frequency wind variability in 1997–1998 contributed to the amplitude of the event, set the evolution of the warm event and potentially influenced the equatorial Pacific conditions at least one year after the El Niño event. In addition, eastern boundary reflection also significantly contributed to the amplitude and duration of the warm event, whereas its termination was a combination of various factors: reflection of upwelling Rossby waves at the western boundary and large easterly wind anomalies observed in the western Pacific from November 1997 to early 1998. These factors were sufficient to terminate the event and to switch temperature anomalies from warm to cold. To conclude, understanding the coupling between the high- and low-frequency wind variability, i.e., studying ENSO as a multi-scale phenomenon, will certainly lead to a better comprehension of the diversity of its behavior and potentially to an improvement of its predictability.  相似文献   

12.
Gao  Feng  Chen  Xiaoling  Yang  Wenfu  Wang  Wenwen  Shi  Lijiang  Zhang  Xiaolong  Liu  Yaomeng  Tian  Yaofei 《Theoretical and Applied Climatology》2022,148(3-4):955-966
Theoretical and Applied Climatology - Under the background of global warming, an analysis of the trend and variability of rainfall time series on various timescales is very important for...  相似文献   

13.
ABSTRACT

In situ observations of snow water equivalent (SWE) from manual snow surveys and automated sensors are made at approximately 1000 sites across Canada in support of water resource planning for flood control and hydroelectricity production. These data represent an important source of information for research (e.g., validation of hydrological and climate models), for applied studies (e.g., ground snow loads), and for climate monitoring. This note describes the process to update a Canadian historical snow survey dataset to 2016 and the production of a 0.1° gridded version for research applications. Analysis of trends in SWE, snow depth (SD), and density over the 50-year period from 1967 to 2016 revealed large spatial variability in trend sign and strength, with a relatively small percentage of points showing statistically significant trends. Where SWE and SD trends were significant, they tended to be negative, which is consistent with previous investigations of snow cover changes in Canada. The results show evidence of a latitudinal dependence in SWE trends, with the largest negative trends occurring over lower latitudes, and a tendency for mainly positive trends in Arctic SWE, which is consistent with observations from Russia and climate model projections of the response of Arctic snow cover to climate warming. Arctic sites also showed evidence of an increasing trend in 1 April snowpack density of 6.6?kg m?3 per decade but little corresponding change in SD. This has potentially important consequences for the soil thermal regime because it provides a cooling influence from an increase in the snowpack effective thermal conductivity. The snow survey dataset is available from the Government of Canada Open Data portal.  相似文献   

14.
The spatial and temporal consistency of seasonal air temperature and precipitation in eight widely used gridded observation-based climate datasets (CANGRD, CRU-TS3.1, CRUTEM4.1, GISTEMP, GPCC, GPCP, HadCRUT3, and UDEL) and eight reanalyses (20CR, CFSR, ERA-40, ERA-Interim, JRA25, MERRA, NARR, and NCEP2) was evaluated over the Canadian Arctic for the 1950–2010 period. The evaluation used the CANGRD dataset, which is based on homogenized temperature and adjusted precipitation from climate stations, as a reference. Dataset agreement and bias were observed to exhibit important spatial, seasonal, and temporal variability over the Canadian Arctic with the largest spread occurring between datasets over mountain and coastal regions and over the Canadian Arctic Archipelago. Reanalysis datasets were typically warmer and wetter than surface observation-based datasets, with CFSR and 20CR exhibiting biases in total annual precipitation on the order of 300?mm. Warm bias in 20CR exceeded 12°C in winter over the western Arctic. Analysis of the temporal consistency of datasets over the 1950–2010 period showed evidence of discontinuities in several datasets as well as a noticeable increase in dataset spread in the period after approximately 2000. Declining station networks, increased automation, and the inclusion of new satellite data streams in reanalyses are potential contributing factors to this phenomenon. Evaluation of trends over the 1950–2010 period showed a relatively consistent picture of warming and increased precipitation over the Canadian Arctic from all datasets, with CANGRD giving moistening trends two times larger than the multi-dataset average related to the adjustment of the station precipitation data. The study results indicate that considerable care is needed when using gridded climate datasets in local or regional scale applications in the Canadian Arctic.  相似文献   

15.
In this study, the multifractal detrended fluctuation analysis method is employed to determine the thresholds of extreme events. Subsequently, the characteristics of extreme temperatures have been analyzed over Northeast China during 1961–2009. Approximately 58 % of stations have negative interdecadal trends of ?2.2 days/10 years to 0 days/10 years in extreme low minimum temperature (ELMT) frequency. Notable positive trend of 0–2.5 days/10 years in extreme high maximum temperature (EHMT) frequency of about 94 % stations are found. Approximately 58 % of stations have decreasing trend in ELMT intensity, whereas 69 % of stations have increasing trend of EHMT intensity. The trends are the range of ?0.72 °C/10 years to 0 °C/10 years and 0–0.7 °C/10 years, respectively. We propose the extreme temperatures indices, ELMT index (ELMTI) and EHMT index (EHMTI), which combined the frequency and intensity of extreme temperatures to represent the order of severity of extreme temperatures. According to this approach, serious ELMT mainly occur in the Songliao Plain and the Sanjiang Plain, especially in the Songliao Plain. Serious EHMT distinctly occur in the Sanjing Plain, and the southwestern and northwestern regions of Northeast China in recent five decades.  相似文献   

16.
Formaldehyde (HCHO), acetaldehyde (CH3CHO) and acetone (CH3COCH3) were measured at Wanqingsha (WQS) in south China during November-December 2008–2010. Carbonyl compound pollution characteristics under the influence of the financial crisis (FC) were studied. Atmospheric carbonyl compound concentrations in the 2008 and 2009 sampling periods were affected by the 2008 FC. The industrial downturn plus the high closing down number of the small enterprises with limited emission treatment during the FC played an important role in the reduction of the industry-related CH3CHO and CH3COCH3. In 2010, the recovery of industrial activities occurred, but affected by traffic restriction enforcement in Guangzhou over the Asian Games period, HCHO concentration (daytime 7.59?±?2.59 μg m?3) was lower than expectation. Carbonyl compounds in WQS site were highly influenced by regional pollution transport from different upwind urban cities and industrial districts in the north-northwest to northeast wind sector in winter. Also, the interaction of the winter monsoon with the warm ocean along the coastline as well as day and night boundary layer mixing height variation affected carbonyl compound concentrations in WQS. The daytime mean dry deposition losses of HCHO and CH3CHO were first time model-estimated for 2009 and 2010. For loss of HCHO in the early afternoon, photolysis was the dominant sink, followed by dry deposition and removal by OH radical (?OH), while for CH3CHO, dry deposition was dominant. For the gain of HCHO and CH3CHO, the production rates during early afternoon in 2009 and 2010 were estimated by an indirect approach.  相似文献   

17.
Summary Erythemal ultraviolet (UV) doses reaching the earths surface depend in a complex manner on the amount of total ozone, cloud cover, cloud type and the structure of the cloud field. A statistical model was developed allowing the reconstruction of UV from measured total ozone and a cloud modification factor (CMF) for the GAW site Hohenpeissenberg, Germany (48°N, 11°E). CMF is derived from solar global radiation G, normalized against a Rayleigh scattering atmosphere. By this way the complex influence of the cloud field is accounted for by introduction of a measured parameter, exposed also to this complex field. The statistical relations are derived from the period 1990–1998 where UV measurements and relevant meteorological parameters are available. With these relations daily UV doses could be reconstructed back to 1968. Tests show that the model works remarkably well even for time scales of a minute except for situations with high albedo. The comparison of measured and calculated UV irradiances shows that the model explains 97% of the variance for solar elevations above 18° on average over the period 1968–2001. The reconstruction back to 1968 indicates that maximum UV irradiances (clear days) have increased due to long-term ozone decline. Clouds show seasonally depending long-term changes, especially an increase of cirrus. Consequently the UV doses have increased less or even decreased in some months in comparison to the changes expected from the ozone decline alone. In May to August total cloud frequency and cloud cover have decreased. Therefore, the average UV doses have increased much more than can be explained by the ozone decline alone. It is also shown that the optical thickness of cirrus clouds has increased since 1953. The higher frequency of cirrus is caused in part by more frequent contrails. Besides that an observed long-term rise and cooling of the tropopause favors an easier cirrus formation. However, whether climate change and an intensification of the water cycle is responsible for the cirrus trends has not been investigated in detail.  相似文献   

18.
The 1958–2007 decline in March–August rainfall over southern Australia (south of 30°S) is very closely related to an increase in surface atmospheric pressure over Australia. Sea surface temperatures around northern Australia are strongly correlated with southern Australian rainfall but the recent warming of the ocean should have led to increased rainfall rather than the observed rainfall decline. The relationships between the rainfall and indices of several modes of the atmosphere/ocean system are investigated to determine a cause of the rainfall decline. Indices of the modes that only use data remote from the Australian region are used to avoid the possibility that a relationship between the mode and Australian rainfall is simply reflecting the behaviour of “local” portions of the index. Thus a climate mode index that incorporates Australian pressure would, of course, be related to southern Australian rainfall, even if the remote parts of the mode were unrelated to Australian rainfall. Unless the remote contributions to the mode index were also related to Australian rainfall it seems physically unrealistic to consider that the mode, per se, was affecting Australian rainfall (rather than simply reflecting the influence of the local pressure changes). The rainfall decline does not appear to be explainable by a change in the behaviour of the El Niño-Southern Oscillation (remote indices of this phenomenon do not exhibit a trend over this period) or the Indian Ocean Dipole (which is not strongly correlated with Australian rainfall on detrended data). The strong 1958–2007 trend in the southern annular mode (SAM) appears able to explain much of the rainfall decline since its year-to-year variations are correlated with year-to-year variations in southern Australian rainfall, and the sense of the correlation and the SAM trend would lead to a decline in rainfall (and an increase in pressure over Australia). The observed trend in SAM can reproduce over 70% of the observed rainfall trend. All these conclusions also apply to the rainfall declines in the southeast and southwest sub-regions.  相似文献   

19.
What drives the development of climate policy? Brazil, China, and India have all changed their climate policies since 2000, and single-case analyses of climate policymaking have found that all three countries have had climate coalitions working to promote climate policies. To what extent have such advocacy coalitions been able to influence national policies for climate-change mitigation, and what can explain this? Employing a new approach that combines the advocacy coalition framework (ACF) with insights from comparative environmental politics and the literature on policy windows, this paper identifies why external parameters like political economy and institutional structures are crucial for explaining the climate advocacy coalitions’ ability to seize policy windows and influence policy development. We find that the coalitions adjust their policy strategies to the influence-opportunity structures in each political context—resulting in confrontation in Brazil, cooperation in China, and a complementary role in India.  相似文献   

20.
Remarkable progress has been made in observations, theories, and simulations of the ocean–atmosphere system,laying a solid foundation for the improvement of short-term climate prediction, among which Chinese scientists have made important contributions. This paper reviews Chinese research on tropical air–sea interaction, ENSO dynamics,and ENSO prediction in the past 70 years. Review of the tropical air–sea interaction mainly focuses on four aspects:characteristics of the tropical Pacific climate system and ENSO; main modes of tropical Indian Ocean SSTs and their interactions with the tropical Pacific; main modes of tropical Atlantic SSTs and inter-basin interactions; and influences of the mid–high-latitude air–sea system on ENSO. Review of the ENSO dynamics involves seven aspects: fundamental theories of ENSO; diagnosis and simulation of ENSO; the two types of ENSO; mechanisms of ENSO initiation; the interactions between ENSO and other phenomena; external forcings and teleconnections; and climate change and the ENSO response. The ENSO prediction part briefly summarizes the dynamical–statistical methods used in ENSO prediction, as well as the operational ENSO prediction systems and their applications. Lastly, we discuss some of the issues in these areas that are in need of further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号