首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
随着煤矿开采深度的不断增加,带压开采已经成为深部矿井普遍应用的一种采煤方法,而带压水上采煤的关键问题之一是确定采动引起的底板破坏深度。针对董家河煤矿5号煤层开采引起的底板采动破坏深度开展相关研究,以该矿的507综采工作面开采为工程背景,采用理论分析和数值模拟相结合的办法,动态再现了整个底板岩层渐进破坏过程,并得出底板岩层的最大破坏深度为10~11 m,该结果与现场实测结果一致;同时给出了该矿底板岩层破坏深度与工作面斜长和埋深关系的经验公式。该结论为董家河煤矿带压开采工作面煤层底板突水预测与防治提供了科学依据。   相似文献   

2.
倾斜煤层底板破坏特征的微震监测   总被引:3,自引:0,他引:3  
带压开采是承压水上采煤的主要方法,底板采动破坏深度的确定是实现带压开采的关键和前提。针对底板采动破坏深度现场测量方法的局限性,特别是倾斜煤层(煤层倾角在25°~45°之间)底板采动破坏深度的现场测量。以桃园煤矿1066工作面为例,利用高精度微震监测技术,对承压水上倾斜煤层底板的采动破坏特征进行了连续的、动态监测。监测结果表明:(1)工作面运输巷(下顺槽)附近的底板比工作面回风巷(上顺槽)附近的底板破坏深度更深,破坏范围更大;(2)倾斜煤层工作面底板破坏形态整体呈现为一个下大上小的非对称形态。根据微震监测结果,确定了1066工作面回风巷和运输巷附近底板的最大破坏深度,划分了倾斜煤层工作面底板突水危险区域。将微震监测的倾斜煤层底板破坏深度与经验公式计算的底板破坏深度进行了对比,指出了经验公式存在的不足  相似文献   

3.
随着煤炭开采深度的增加,深部复杂条件下开采的水害问题日益严重。复杂条件下煤层回采过程顶底板破坏动态监测对于工作面突水预测、采煤方法改进等具有重要意义。本文基于并行电法监测技术,结合双模式电极数据采集方式,同时在采煤工作面进行煤层顶、底板全空间地电场特征监测研究,获得了煤层围岩顶底板采动前后电阻率及自然电位同步响应特征。研究表明:顶底板跨孔电阻率监测动态变化可以显示孔间电阻率随采煤工作面逐步推进的动态变化情况,可有效表征顶底板破坏带发育范围,同时顶板垮落造成的电阻率变化程度大于底板破裂引起的电阻率变化程度;自然电位数据可分辨顶、底板岩层及裂隙张合形态、以及破裂程度,研究区域内顶板自然电位值明显高于底板自然电位值,且顶板的破裂引起的自电位变化强度明显大于底板破裂引起的自电位变化。采用多参数对煤层顶底板采动破坏进行同步动态监测,对保障采动工作面安全回采具有现实应用价值。  相似文献   

4.
数值模拟在回坡底煤矿底板突水防治中的应用   总被引:3,自引:1,他引:2  
随着煤矿开采深度的不断增加,将面临高承压水的严重威胁,带压开采已成为深部煤炭资源开采的主要方式。应用RFPA2D-Flow系统对煤层底板破坏深度进行了数值模拟,得出了回坡底煤矿采煤工作面煤层底板岩层的破坏深度约为12 m;同时,当回采到110 m处时,自切眼向掘进方向50~80 m处出现漏斗状底板破坏区,该破坏区将可能导通底部奥灰水,使煤层底板发生突水。  相似文献   

5.
研究采动影响对底板岩层的破坏范围,掌握矿压和水压对底板岩层作用的关系是煤矿防治底板水害的关键。团柏煤矿开采10煤和11煤,受到底板奥灰岩溶水的威胁,因此,以10煤为研究对象,采用煤层开采过程中底板监测钻孔的压水实验,研究采动影响范围和底板岩层的破坏深度。研究结果表明,10煤开采对底板岩层的破坏范围为10~12 m,横向影响范围40 m,峰值点位于6~20 m。该成果可为煤矿开采深部煤炭资源时进行底板突水预测预报提供技术支持。   相似文献   

6.
鄂尔多斯盆地准格尔东部煤田石炭?二叠系 6 煤层为巨厚煤层,煤层底板面临奥陶纪灰岩含水层威胁尤为突出,由于采动效应的影响会形成底板采动破坏带,可能会形成新的导水通道引起突水灾害。针对底板采动破坏带测试问题,提出采用动源动接收的孔中瞬变电磁法,在采前和采后工作面底板钻孔中获取岩层电阻率特征数据的方法。首先通过数值模拟对比孔中瞬变电磁法在完整和二层岩层模型中呈现的电阻率差异性,验证该方法对二层岩层模型具有较好分辨率;然后在准格尔煤田酸刺沟煤矿6119巨厚煤层综放工作面进行试验,通过探查底板电性差异层得到底板破坏深度,经过验证结果准确可靠。研究表明:孔中瞬变电磁法探测技术与测试钻孔相结合,通过对比采前与采后结果获取了较为准确底板破坏深度,对类似条件下的工作面破坏深度测试提供了一种新的方法。   相似文献   

7.
为了分析评价奥灰含水层对轩岗矿区刘家梁煤矿5号煤层开采威胁程度,确保矿井安全开采,根据矿井以往相关地质及水文地质资料,本文以刘家梁煤矿5号煤层底板带压开采水文地质条件为基础,通过对煤层底板奥灰含水层的富水性、隔水层的岩性组合特征、底板采动破坏深度等综合分析,利用煤层底板采动破坏深度计算分析和5号煤层底板突水系数计算等评价方法,对煤层开采发生底板奥灰突水的危险性进行了综合分析评价,得出了在完整底板情况下5号煤层可以安全回采,同时还提出了煤层带压开采的防治水技术措施。  相似文献   

8.
大采深工作面煤层底板采动破坏深度测试   总被引:1,自引:0,他引:1  
针对邢东矿大采深的情况,利用现场底板注水试验对2121工作面底板采动破坏深度进行了测试研究,依据单位注水量的动态变化以及注水孔与采线之间的距离关系,确定了底板破坏深度。试验结果表明:该工作面底板破坏深度为32.5~35m,比300m采深以内的工作面实测深度(9.15~12.0m)增加2倍以上,说明随着开采深度的增加,煤层底板采动破坏深度呈明显增大的趋势,因此,在水压和破坏深度二者同时增加的条件下,2121工作面深部煤层开采的突水危险性远远大于浅部煤层。测试结果为邢东矿大采深工作面的防治水方案的制订提供了科学依据。   相似文献   

9.
突水预测的采动煤层底板相似模拟方法研究   总被引:1,自引:0,他引:1  
以淮北朱庄矿Ⅲ616综采工作面为原型建立了相似模型,模拟工作面回采过程中的应力和位移变化。模拟结果表明由切眼向前开挖至45~50 m,老顶岩层初次断裂失稳,底板岩层压张应力差最大,采动造成的底板变形破坏深度在16 m以上,为突水危险地段;与数值模拟方法相拟合,计算采动造成的底板应力变化,选取Drucker-prager屈服条件作为判断岩石是否破坏为突水判据,由煤层底板塑性区分布图反映,当开挖至49 m左右时,底部导升区和上部采动破坏带基本贯通,可能发生突水。据此对工作面进行了布置,并采取了相应防范措施,取得了良好的应用结果。  相似文献   

10.
煤层底板破坏的断层效应模拟及其在防治水中的应用   总被引:1,自引:0,他引:1  
梁北煤矿已发生5 次寒武系灰岩底板突水事故,造成重大经济损失。根据矿井的水文地质条件,建立了煤层开采的FLAC 数值模型,利用岩石力学及渗流力学理论,分别模拟了无断层和有断层条件下煤层底板采动破坏带的演化规律,重点讨论了断裂深度及断层空间位置对底板破坏深度的影响。结果表明,断层的存在可使底板采动破坏深度增加20%~33%,断层是突水重点防范区域,遇断层前10 m 直到过断层15 m 须加强防治水工作。根据模拟结果设计了梁北矿11041, 11151,11111 三个工作面底板的注浆加固工程,重点注浆层位分别为底板破坏范围和寒武系顶部裂隙发育带,注浆工程增强了底板的阻水能力,实现了工作面的安全回采。  相似文献   

11.
渭北煤田5、10号煤层底板以下的奥陶系灰岩强含水层,水头压力大,对采煤的威胁严重,历史上曾经发生多次底板突水事故,造成重大人员伤亡。以澄合矿区为例,研究了带压开采防治水的技术路线,提出了底板注浆加固的防治水方法,并成功应用于董家河煤矿,不仅安全开采了5号煤层,而且保护了渭北地区岩溶水的统一水位标高,使区内各岩溶大泉流量稳定、黄河湿地生态安全得以保证,促进了生物多样性和工农业用水安全,为渭北及华北型煤田底板承压水体上带压安全采煤找到了技术途径。  相似文献   

12.
突水预测的采动煤层底板相似模拟方法研究   总被引:2,自引:0,他引:2  
以淮北朱庄矿Ⅲ616综采工作面为原型建立了相似模型,模拟工作面回采过程中的应力和位移变化,模拟结果表明:由切眼向前开挖至45~50m老顶岩层初次断裂失稳,底板岩层压张应力差最大,采动造成的底板变形破坏深度在16m以上,为突水危险地段,与数值模拟方法相拟合计算采动造成的底板应力变化。选取Drucker-prager屈服条件作为判断岩石是否破坏为突水判据,由煤层底板塑性区分布图反映,当开挖至49m左右  相似文献   

13.
为研究煤层底板采动破坏规律,以邯邢地区9号煤层为原型,采用室内相似材料模拟技术,对煤层开采过程中煤层底板的应力分布、位移、破坏规律及破坏深度进行模拟和观测研究。结果表明,工作面推进0~70cm时底板应力分布曲线呈V形,工作面推进70~150cm时底板应力分布曲线呈W字形。并提出邯邢地区9号煤层埋藏深度为600m之内的煤层底板破坏带深度的经验公式为h=0.04367H-2.7315M 12.6117。  相似文献   

14.
以河南贺驼煤矿1112工作面为工程背景,基于FLAC3D软件,通过建立相关数值模型,对工作面开采过程中煤层底板扰动规律特征进行了模拟研究,分析了煤层底板推进过程中在走向和倾向上的破坏深度和应力变化规律。结果表明:随着工作面的推进,底板破坏程度逐渐增大,当推进到一定距离时,底板采动破坏深度达到峰值,之后趋于稳定,而破坏范围一直在增大。本次研究结果为矿井底板突水的防治提供了理论依据和科学参考。  相似文献   

15.
针对孤岛工作面煤层开采底板损伤问题,以河北葛泉煤矿11913孤岛工作面为研究对象,采用微震方法分析其底板破坏深度;并通过数值模拟对首采、跳采及孤岛3种工作面回采过程中围岩采动应力与底板破坏的规律进行了对比分析。微震测试结果显示11913工作面回采过程中微震事件主要发生在下巷,识别出工作面最大破坏深度20~25 m;基于COMSOL的11912首采、11914跳采及11913孤岛3个工作面数值模拟结果显示,11912首采与11914跳采条件下煤柱地应力集中状态变化不大,最大破坏深度小于11.56 m,仅发育至工作面底板的注浆改造层内部;而11913孤岛回采条件下,受到重复采动影响,工作面两侧煤柱应力集中状态骤增,最大破坏深度剧增至23 m,已发育至煤层底板的本溪组灰岩含水层。研究结果对于华北型煤田下组煤层开采底板破坏规律分析与不同类型工作面回采条件下底板水害防治有一定的参考价值。   相似文献   

16.
传统采动破坏深度计算中认为底板结构完整,未考虑实际岩体损伤。以淮南潘北矿11113工作面A组煤开采为背景,利用FLAC3D对完整与损伤底板采动应力变化特征进行了分析,推导并计算了底板岩层损伤变量与底板破坏深度。此外,为验证该方法的有效性,对比分析了计算结果与测量结果。结果表明:采动应力的最大值出现在煤壁前后方,底板完整时为14.8 MPa,底板损伤时为17.5 MPa;底板岩层损伤变量D为0.574,基于损伤变量计算得出的底板最大破坏深度为16.15 m,对比并行电法探测结果16.00 m,该方法的计算准确率高。研究结果为快速准确确定底板采动破坏深度提供了一个新思路。   相似文献   

17.
《岩土力学》2017,(Z1):447-454
采动影响下完整底板防治水的重点是研究岩层由隔水层到导水通道的演化过程。煤层开采引起底板岩体承受压–拉–压循环荷载,并导致弹性模量变化。以弹性模量为损伤变量,采用双标量型D-P弹塑性损伤本构模型,根据成庄矿条件建立数值模型,分析采动底板导水通道演化规律。结果表明,(1)上一计算步煤壁处底板压缩破坏深度随顶板悬露面积增大而再次加深,工作面煤壁位置处底板压缩损伤深度的增长速率在充填体影响下迅速减小(顶板初次垮落),并最终达到稳定(顶板周期垮落);(2)采动底板中同时存在压、拉损伤破裂带,二者相互连通,决定了导水通道的位置;(3)充填体的弹性模量对底板破坏深度有很大影响,其值过低会导致破坏深度持续快速增加。由注水试验所得监测结果与数值模拟成果基本吻合。  相似文献   

18.
煤层底板变形破坏除受地质因素控制外,还受开采因素影响。通过试验和理论分析,系统研究了煤炭开采对回采工作面底板应力、应变和破坏及渗透性的影响。研究结果表明,不同岩性岩石的渗透性在全应力-应变过程中为应变的函数,在微裂隙闭合和弹性变形阶段,岩石的原生孔隙和裂隙容易被压密,岩石的渗透率随应力的增加由大变小明显,当应力增大至极限强度时岩石试件破坏形成贯穿裂隙,岩石的渗透率迅速增大至最大,不同岩性岩石存在一定差异性;随着回采工作面推进,煤层底板岩层在横向上划分为原岩应力区、超前压力压缩区、采动矿压直接破坏区和底板岩体应力恢复区4个区。煤层底板岩体的渗透性随着煤炭开采底板岩体变形破坏而呈规律性变化。   相似文献   

19.
以韩城矿区桑树坪煤矿下组煤3105工作面开采实际情况为背景,采用现场声波测试和数值模拟方法,对沿空留巷开采条件下煤层底板扰动破坏规律进行了研究。声波测试成果表明工作面底板扰动破坏深度为13.2~14.6 m,数值模拟成果显示工作面底板破坏深度为13.0~14.5 m,两种方法结果较为一致。通过与正常开采条件下底板破坏深度进行对比,结果表明,采用无煤柱式的沿空留巷开采技术不会对底板破坏深度造成较大影响。研究成果为国内底板带压工作面采用沿空留巷技术开采过程中底板扰动破坏规律的确定提供依据。   相似文献   

20.
以金牛能源股份有限公司邢台矿9号煤开采为例,对底板岩体质量及阻水性能进行了评价。首先分析了开采煤层的底板岩体地质结构,获取了岩石力学参数;进行了地应力测试,掌握了该区域地应力性质;进行了矿山压力显现规律研究,获取了工作面的初次垮落步距、周期来压步距和来压强度;在综放和综采工作面进行了底板破坏深度测试,得到了不同开采条件下煤层底板破坏深度;采用三维非线性固-液耦合岩石水力学计算方法,以非线性数值模拟软件ANSYS为手段,建立了三维数值仿真模型,根据矿井水文地质、工程地质特征和开采技术条件,分4种工况,对不同开采阶段、不同深度煤层底板应力分布、破坏状态的影响进行了分析研究。数值模拟结果表明,从突水的必要条件(底板破裂带贯通)和充分条件(水平应力小于承压水压力)来考察,在本次计算采用的工作面开采条件和正常的地质条件下,突水的可能性由大到小依此为:工况Ⅳ >工况Ⅲ >工况Ⅱ >工况Ⅰ,由此为该矿首个9号煤工作面开采选择提供了依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号