首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Meteoric ions in the atmosphere of Mars   总被引:1,自引:0,他引:1  
  相似文献   

6.
L.A. Capone  S.S. Prasad 《Icarus》1973,20(2):200-212
This paper reports results obtained on ionosphere formation in the Jovian upper atmosphere with special reference to some of the recently available reaction rates, and to recent models of the Jovian neutral atmosphere based on the possibility of a warmer mesopause. We find that the role of the hypothetical radiative association of H+ to H2 to form H3+, as brought to light in our earlier study, is still important, even with a reaction rate as low as 10?15 cm3sec?1. In the lower regions of the ionosphere three-body processes leading to the formation of H3+ and H5+ ions, which have very fast dissociative recombination rates, produce a dramatic reduction in the electron density. When no radiative association takes place, and the H+ ions are lost by radiative recombination alone, we confirm that the photochemical equilibrium profile is also the diffusive equilibrium profile. However, with collisional-radiative recombination, whose rate becomes altitude-dependent, diffusion tends to bring about some redistribution of the ionization. Inclusion of radiative association enhances the role of diffusion. In this case, diffusion brings about all the expected changes. In particular, the differences in the electron density profile, originated in the lower-middle ionosphere by radiative association, are propagated up to all higher altitudes by diffusion. The rate constant of radiative association is, however, unknown. It is hoped that the critical importance of this reaction for the Jovian ionosphere will be an incentive towards a careful laboratory determination of its rate coefficient. In the older models of the Jovian ionosphere the major ions were H+ which were lost only by pure radiative recombination. This led to high electron densities and practically no diurnal change. In contrast, our new models have relatively much smaller electron densities, especially in lower regions, and may be susceptible to significant diurnal variation.  相似文献   

7.
8.
The problem of the ionospheric formation in the Jovian upper atmosphere is examined. By adopting two plausible atmospheric models, we solve coupled time-dependent continuity equations for ions H2+, H5+, H+, H3+ and HeH+ simultaneously. It is shown that both radiative and three body association of H+ to H2 are important for the determination of the structure of the Jovian ionosphere. The maximum electron density in the daytime is found to be about 105 cm?3. It is also shown that diurnal variation with large-amplitude can exist in the Jovian ionosphere.  相似文献   

9.
10.
11.
12.
13.
We have studied the escape and energization of several O+ populations and an population at Mars by using a hybrid model. The quasi-neutral hybrid model, HYB-Mars model, included five oxygen ion populations making it possible to distinguish photoions from oxygen ions originating from charge exchange processes and from the ionosphere.We have identified two high-energy ion components and one low-energy ion component of oxygen. They have different spatial and energy distributions near Mars. The two high-energy oxygen ion components, consisting of a high-energy “beam” and a high-energy “halo”, have different origins. (1) The high-energy (>∼100 eV) “beam” of O+ and ions are originating from the ionosphere. These ions form a highly asymmetric spatial distribution of escaping oxygen ions with respect to the direction of the convective electric field in the solar wind. (2) The high-energy (>∼100 eV) “halo” component contains O+ ions which are formed from the oxygen neutral exosphere by extreme ultraviolet radiation (EUV) and by charge exchange processes. These energetic halo ions can be found all around Mars. (3) The low energy O+ and ions (<∼100 eV) form a relatively symmetric spatial distribution around the Mars-Sun line. They originate from the ionosphere and from charge exchange processes between protons and exospheric oxygen atoms.The existence of the low- and the high-energy oxygen components is in agreement with recent in situ plasma measurements made by the ASPERA-3 instrument on the Mars Express mission. The analysis of the escaping oxygen ions suggests that the global energization of escaping planetary ions in the martian tail is controlled by the convective electric field.  相似文献   

14.
15.
W.-L. Tseng  W.-H. Ip  T.A. Cassidy 《Icarus》2010,206(2):382-389
The saturnian system is subject to constant bombardment by interplanetary meteoroids and irradiation by solar UV photons. Both effects release neutral molecules from the icy ring particles either in the form of impact water vapor or gas emission in the form of H2O, O2 and H2. The observations of the Cassini spacecraft during its orbit insertion have shown the existence of molecular and atomic oxygen ions. Subsequent modeling efforts have led to the picture that an exospheric population of neutral oxygen molecules is probably maintained in the vicinity of the rings via photolytic-decomposition of ice and surface reactions. At the same time, ionized products O+ and ions move along the magnetic field lines and, depending on the optical local thickness rings, can thread through the ring plane or impact a ring particle, the ion principal sink. In addition, collisional interactions between the ions and neutrals will change the scale height of the ions and produce a scattered component of O2 molecules and O atoms which can be injected into Saturn’s upper atmosphere or the inner magnetosphere. The ring atmosphere, therefore, serves as a source of ions throughout Saturn’s magnetosphere. If photolysis of ice is the dominant source of O2, then the complex structure of the ring atmosphere/ionosphere and the injection rate of neutral O2 will be subject to modulation by the seasonal variation of Saturn along its orbit. In this work, we show how the physical properties of the ring oxygen atmosphere, the scattered component, and the magnetospheric ion source rate vary as the ring system goes through the cycle of solar insolation. In particular, it is shown that the magnetopheric ions should be nearly depleted at Saturn’s equinox if O2 is produced mainly by photolysis of the ring material.  相似文献   

16.
Sang J. Kim  T.R. Geballe  J.H. Kim 《Icarus》2009,202(1):354-357
Jupiter exhibits bright H+3 auroral arcs at 3-4 microns that cool the hot (>1000 K) ionosphere above the ∼10−7 bar level through the infrared bands of this trace constituent. Below the 10−7 bar level significant cooling proceeds through infrared active bands of CH4, C2H2, and C2H6. We report the discovery of 3-micron line emission from these hydrocarbon species in spectra of the jovian south polar region obtained on April 18 and 20, 2006 (UT) with CGS4 on the United Kingdom Infrared Telescope. Estimated cooling rates through these molecules are 7.5×10−3, 1.4×10−3, and , respectively, for a total nearly half that of H+3. We derive a temperature of 450 ± 50 K in the 10−7-10−5 bar region from the C2H2 lines.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号