首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Einstein-Carten theory only the traceless part of the torsion field can be related spin. Here we generalize the Einstein-Cartan theory by allowing iutrinsic dilation currents, which couple algebraically to the torsion trace. This implies implies a variable gravitational coupling, G.  相似文献   

2.
Ambipolar diffusion is discussed for the case of a weakly-ionized, multicomponent plasma. Shortcomings of some of the previous formulations of this problem are pointed out. In particular, it is shown that the polarization electrostatic field acts to couple the motion of the various ions with the result that the diffusion velocity of each ion depends on the density gradients of all the ions.  相似文献   

3.
第一颗系外行星仙王座γ有许多与众不同之处。其一,它是未来的北极星。一千年以后,它将比现在的北极星勾陈一更接近北天极。另一个与众不同之处在于,它拥有第一个被发现的系外行星。发现这颗系外行星的科学家们并不幸运,他们花了几十年的时间才最终确认这颗系外行星真实存在。  相似文献   

4.
Wegener concluded that the Earth's surface has suffered regionally variable westward displacement. Modern data support Wegener's conclusion, but a causative mechanism has not been evident. The retarding torque is too small to distort the viscous Earth. At the same time difficulty has been experienced in explaining the large value of the astronomically detected tidal dissipation. We have examined the effect of the secular rotational strain imposed by tidal bulge formation on convection in the mantle of arbitrary origin. The dissipation as measured by the lag in the bodily tides appears adequate to explain the missing part of the dissipation, some 8.5 × 1026 erg yr–1, without recourse to an unidentified mechanism in the seas. The convection must itself be influenced by the external force system. The effect to be expected is that circulation resulting in westward displacement at surface must be fostered at the expense of circulation in other directions. The history of the tidal couple, if this is based on dissipation in the mantle, is likely to differ greatly from that of a couple based on dissipation in the seas.  相似文献   

5.
The aim of the present paper is to investigate generation of waves in an infinite micropolar elastic medium under the influence both of initial stressp and body forces X. The equation of motion has been solved applying the Fourier-Hankel transform. The final results, the displacement, the stress, the rotation, and the couple stress components have been obtained in analytical form as integrals involving Bessel function of first kind and of zero order.  相似文献   

6.
All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described.  相似文献   

7.
It is known since the seminal study of Laskar (1989) that the inner planetary system is chaotic with respect to its orbits and even escapes are not impossible, although in time scales of billions of years. The aim of this investigation is to locate the orbits of Venus and Earth in phase space, respectively, to see how close their orbits are to chaotic motion which would lead to unstable orbits for the inner planets on much shorter time scales. Therefore, we did numerical experiments in different dynamical models with different initial conditions—on one hand the couple Venus–Earth was set close to different mean motion resonances (MMR), and on the other hand Venus’ orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i = 40°). The couple Venus–Earth is almost exactly in the 13:8 mean motion resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8 resonance are within a small shift in the Earth’s semimajor axis (only 1.5 percent). Especially Mercury is strongly affected by relatively small changes in initial eccentricity and/or inclination of Venus, and even escapes for the innermost planet are possible which may happen quite rapidly.  相似文献   

8.
We present proper motion measurements for a number of knots in the jets and bow shocks of the outflows from DG Tau, DG Tau B, T Tau, CoKu Tau 1, FS Tau, and FS Tau B in the nearby Taurus-Auriga star forming region. From these measurements and the available radial velocity data we derive tangential velocities, spatial velocities, angles of the outflows with respect to the plane of the sky, and in a couple of cases the pattern motions of the knots relative to the flow speed.  相似文献   

9.
The low energy coupling of the electromagnetic field to the axion leads to two distinct dispersion relations for the electromagneticaxion oscillations. The one frequency being the normal electromagnetic (E. M.) oscillation while the other represents a coupled oscillation. When a non-zero chemical potential is associated with the axion-electromagnetic oscillation and the spectrum of the two oscillations are super-imposed, a formula emerges that suggests how the Cosmic Background Radiation (C.B.R.) might differ from that of a black body if axions do in fact couple to the background radiation.  相似文献   

10.
The procedure of computing the intensity and the polarization parameters of radiation diffusely reflected and transmitted by an inhomogeneous, plane-parallel planetary atmosphere is discussed with the aid of the adding method. If the atmosphere is simulated by a number of homogeneous sublayers (aerosols and ozone may be included), the matrices of radiation diffusely reflected and transmitted by the atmosphere can be expressed in terms of these matrices of sublayers by using only a couple of iterative equations with the polarity effect of radiation. This procedure is to be extended to the model atmosphere bounded by the surface reflector with a quite arbitrary phase matrix.  相似文献   

11.
A young hot Jupiter might have been tidally inflated beyond its Roche radius when its orbit was being circularized. This scenario has the potential to explain a couple of solid or tentative observations such as a pile‐up of hot Jupiters around 0.04‐0.05 AU, the mass‐period correlation of transiting planets, as well as the existence of hot Neptunes. Other scenarios such as tidal dissipation in a planet‐host star as well as the magnetic interaction will be also discussed. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Using the potential-density phase shift approach developed by the present authors in earlier publications, we estimate the magnitude of radial mass accretion/excretion rates across the disks of six nearby spiral galaxies (NGC 628, NGC 3351, NGC 3627, NGC 4321, NGC 4736, and NGC 5194) having a range of Hubble types. Our goal is to examine these rates in the context of bulge building and secular morphological evolution along the Hubble sequence. Stellar surface density maps of the sample galaxies are derived from SINGS 3.6 μm and SDSS i-band images using colors as an indicator of mass-to-light ratios. Corresponding molecular and atomic gas surface densities are derived from published CO (1-0) and HI interferometric observations of the BIMA SONG, THINGS, and VIVA surveys. The mass flow rate calculations utilize a volume-type torque integral to calculate the angular momentum exchange rate between the basic state disk matter and what we assume to be density wave modes in the observed galaxies. This volume-type integral contains the contributions from both the gravitational surface torque couple and the advective surface torque couple at the nonlinear, quasi-steady state of the wave modes, in sharp contrast to its behavior in the linear regime, where it contains only the contribution from the gravitational surface torque couple used by Lynden-Bell & Kalnajs in 1972. The potential-density phase shift approach yields angular momentum transport rates several times higher than those estimated using the Lynden-Bell and Kalnajs approach. And unlike Lynden-Bell and Kalnajs, whose approach predicts zero mass redistribution across the majority of the disk surface (apart from the isolated locations of wave-particle resonances) for quasi-steady waves, the current approach leads to predictions of significant mass redistribution induced by the quasi-steady density wave modes, enough for the morphological types of disks to evolve substantially within its lifetime. This difference with the earlier conclusions of Lynden-Bell and Kalnajs reflects the dominant role played by collisionless shocks in the secular evolution of galaxies containing extremely non-linear, quasi-steady density wave modes, thus enabling significant morphological transformation along the Hubble sequence during a Hubble time. We show for the first time also, using observational data, that stellar mass accretion/excretion is just as important, and oftentimes much more important, than the corresponding accretion/excretion processes in the gaseous component, with the latter being what had been emphasized in most of the previous secular evolution studies.  相似文献   

13.
In this paper, we study the effects of polynomial f(R) model on the stability of homogeneous energy density in self-gravitating spherical stellar object. For this purpose, we construct couple of evolution equations which relate the Weyl tensor with matter parameters. We explore different factors responsible for density inhomogeneities with non-dissipative dust, isotropic as well as anisotropic fluids and dissipative dust cloud. We find that shear, pressure, dissipative parameters and f(R) terms affect the existence of inhomogeneous energy density.  相似文献   

14.
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary disks. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface. Magnetically-driven mixing has implications for disk chemistry and evolution of the grain population, and the effective viscous response of the disk determines whether planets migrate inwards or outwards. However, the weak ionisation of protoplanetary disks means that magnetic fields may not be able to effectively couple to the matter. I examine the magnetic diffusivity in a minimum solar nebula model and present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas, except at the disk surfaces where the low density of neutrals permits the ions to remain attached to the field lines. For a standard population of 0.1 μm grains the active surface layers have a combined column Σactive≈2 g cm−2 at 1 AU; by the time grains have aggregated to 3 μm, Σactive≈80 g cm−2. Ionisation in the active layers is dominated by stellar X-rays. In the absence of grains, X-rays maintain magnetic coupling to 10% of the disk material at 1 AU (i.e. Σactive≈150 g cm−2). At 5 AU the Σactive≈Σtotal once grains have aggregated to 1 μm in size.  相似文献   

15.
Sivaram  C.  Arun  Kenath 《Earth, Moon, and Planets》2019,123(1-2):9-13

Gravitational waves from mergers of black holes and neutron stars are now being detected by LIGO. Here we look at a new source of gravitational waves, i.e., a class of dark matter objects whose properties were earlier elaborated. We show that the frequency of gravitational waves and strains on the detectors from such objects (including their mergers) could be within the sensitivity range of LIGO. The gravitational waves from the possible mergers of these dark matter objects will be different from those produced by neutron star mergers in the sense that they will not be accompanied by electromagnetic radiation since dark matter does not couple with radiation.

  相似文献   

16.
An accretion disk is an inevitable part of the star forming process. Recent years have witnessed dramatic progress in our understanding of how turbulence arises and transports angular momentum in astrophysical accretion disks. The key conceptual point is that the combination of a subthermal magnetic field and outwardly decreasing differential rotation is subject to the magnetorotational instability. This rapidly generates magnetohydrodynamical (MHD) turbulence, leading to greatly enhanced angular momentum transport. Purely hydrodynamic disks, on the other hand, are stable. Disks that are too cool to couple effectively to the magnetic field will not be turbulent. Fully global three dimensional MHD simulations are now beginning to probe the properties of accretion disks from first principles.  相似文献   

17.
One-armed oscillation modes in the circumstellar discs of Be stars may explain the cyclical variations in their emission lines. We show that a 3D effect, involving vertical motion and neglected in previous treatments, profoundly influences the dynamics. Using a secular theory of eccentric discs that reduces the problem to a second-order differential equation, we show that confined prograde modes are obtained for all reasonable disc temperatures and stellar rotation rates. We confirm these results using a numerical analysis of the full set of linearized equations for 3D isothermal discs including viscous terms that couple the horizontal motions at different altitudes. In order to make these modes grow, viscous damping must be overcome by an excitation mechanism such as viscous overstability.  相似文献   

18.
We consider a generalized Brans-Dicke model in which the scalar field has a potential function and is also allowed to couple non-minimally with the matter sector. This anomalous gravitational coupling can in principle avoid the model to pass local gravity experiments. One then usually assumes that the scalar field has a chameleon behavior in the sense that it acquires a density-dependent effective mass. While it can take a small effective mass in cosmological (low-density environment) scale, it has a sufficiently heavy mass in Solar System (large-density environment) and then hides gravity tests. We will argue that such a chameleon behavior can not be generally realized and depends significantly on the forms attributed to the potential and the coupling functions.  相似文献   

19.
The tidally-induced couple acting on the Moon, due to friction between the oceans and their beds, is calculated as a function of the Earth-Moon separation. The function is found to be proportional to 1+d/R 3 , and not the previously used 1/R 6. By use of this new function it is found that the present rate of lunar recession gives an acceptable history for the system if it is assumed the Moon was initially in a close geo-stationary orbit 4 billion years ago, when perturbed by the condensation of the Earth's core.  相似文献   

20.
It is shown that the influences of the thermal and tidal effects on Mercury's libration are in equilibrium with the periods of rotation and revolution of Mercury locked in the 32 resonant state. The suggestion by Liu that the solar gravitational couple on the thermal bulges accelerates Mercury's rotation is investigated and the production of mechanical energy to balance the dissipation of the bodily tides is discussed. It is possible for Mercury to rotate with two bulges as a solar thermal engine; the tidal effect causes this engine to function and its maximum power is close to 1016 ergs per sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号