首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The uranium deposits in the basin of Franceville (Gabon) host the only natural fission reactors known in the world. Unique geological conditions favoured a natural fission reaction 2 Ga ago. This was detected by anomalous isotopic compositions of uranium and rare earth elements (REE), which are produced by the fission reaction. In total, 16 reactor zones were found. Most of them are mined out. The reactor zone of Bangombé, is only 10–11 m below the surface. This site has been influenced by surface weathering processes. Six drill cores have been sampled at the site of the reactor zone of Bangombé during the course of the study and only one drill core (BAX 08) hit the core of the reactor. From these data and previous drilling campaigns, the reactor size is estimated to be 10 cm thick, 2–3 m wide and 4–6 m long. The migration of fission products can be traced by the anomalous isotope ratios of REE because of the fission process. The 149Sm/147Sm ratio close to the reactor zone is only 0.28 (normal: 0.92) because of the intense neutron capture of 149Sm and subsequent transmutation, whereas 147Sm is enriched by the fission reaction. Similar changes in isotopic patterns are detectable on other REE. The isotope ratios of Sm and Nd of whole rock and fracture samples surrounding the reactor indicate that fission-genic REE migrated only a few decimetres above and mainly below the reactor zone. Organic matter (bitumen) seems to act as a trap for fission-genic REE. Additional REE-patterns show less intense weathering with increasing depth in the log profile and support a simple weathering model. Received: 26 November 1999 · Accepted: 2 May 2000  相似文献   

2.
The rate of spontaneous fission decay of uranium-238 (λf238) was determined in 4π-geometry by the fission track method. Uranium glasses of known age of manufacture were used. Spontaneous tracks have accumulated since the time of manufacture and induced tracks to determine the uranium content were produced by thermal neutron irradiations. Spontaneous tracks in all glasses were found to be partially annealed. By correcting for this annealing effect, a (λf238) = 8.7 ± 0.6 × 10?17yr?1 was obtained. Uncertainty in the neutron dose is the largest source of error.  相似文献   

3.
《Precambrian Research》2003,120(1-2):81-100
Knowledge of the formation conditions of Francevillian uranium and manganese ore deposits as well as natural fission reactors sheds light on the early evolution of the atmosphere between 1950 and 2150 Ma ago. The model explaining the formation of the Oklo uranium deposits suggests that at the time of sediment deposition in the Franceville basin 2150 million years ago, the oxygen deficient atmosphere would have inhibited uranium dissolution. Dissolution of uranium was only possible during later diagenesis, approximately 1950 Ma. Reduction reactions in the presence of hydrocarbons allowed precipitation of dissolved uranium to U4+, forming deposits with high enough uranium contents to trigger subsequent nuclear fission reactions. Such a model is in agreement with earlier suggestions that oxygen contents in atmosphere increased during a ‘transition phase’ some 2450–2100 Ma ago. The manganese deposits were formed before the uranium deposits, during the deposition of the black shales and very early diagenesis, and thus at a time when oxygen content in atmosphere was very low. Carbon isotopes data of organic matter show decrease of δ13C upward in the Francevillian series (−20 to −46% PDB) reflecting the high CH4 and low O2 contents in the atmosphere during sediment deposition. This favoured anoxic conditions during deposition of the basinal FB black shales and likewise the migration of Mn over long distances. The manganese precipitated first as Mn-oxides at the shallow edges of the Franceville basin, in photic zones, where photosynthetic organisms flourished. Mn-oxides were then reduced in the black shales forming Mn-carbonates when conditions became more reducing during transgression episodes and/or the first stages of burial. In the black shales, reducing conditions prevailed until recent weathering, allowing the good preservation of organic matter and the Mn deposits. The present-day alteration is responsible for the dissolution of Mn-carbonates and precipitation of Mn-oxides at the water table to form the high grade Mn ore (45–50% Mn). Development of photosynthesizing organisms, a volcanic source of the Mn, and favourable palaeogeography of the Francevillian basins are all important parameters for the formation of the Mn deposits. For the occurrence of the natural nuclear reactors, the age of 2.0 Ga is the main parameter that controls the abundance of fissile 235U and the critical mass. Before 2.0 Ga the 235U/238U ratio was sufficiently high for fission reactions to occur but conditions favourable for forming high grade uranium ores were not achieved. Then, after 2.0 Ga the increase of oxygen in the atmosphere commonly led to the formation of high grade uranium ores in which the 235U/238U ratio was too low to support criticality.  相似文献   

4.
相山铀矿田铀多金属成矿时代与成矿热历史   总被引:1,自引:1,他引:0  
林锦荣  胡志华  王勇剑  张松  陶意 《岩石学报》2019,35(9):2801-2816
相山铀矿田的铀多金属矿化主要可划分为碱性铀矿化、酸性铀矿化、铅锌银铜矿化和金矿化四种类型。通过沥青铀矿和矿化岩石U-Pb等时线、黄铁矿Rb-Sr等时线、绢云母~(40)Ar-~(39)Ar同位素年龄测定,结合铀多金属成矿特征研究,厘定了相山铀矿田铀多金属成矿时代,确定铀多金属矿化的成矿时序为:碱性铀矿化、铅锌银铜矿化、金矿化、酸性铀矿化。锆石裂变径迹研究表明,相山矿田铀多金属矿化样品的锆石裂变径迹峰值年龄与U-Pb、Rb-Sr和~(40)Ar-~(39)Ar同位素年龄一致性良好,裂变径迹年龄(峰值年龄)可以限定热液铀多金属成矿热事件时代。碱性铀成矿热事件的锆石裂变径迹峰值年龄为119. 8~125. 6Ma;金成矿热事件和铅锌银铜多金属成矿热事件的锆石裂变径迹峰值年龄为106. 1~113. 8Ma;酸性铀成矿热事件的锆石裂变径迹峰值年龄为86. 7~100. 0Ma;新发现一期锆石裂变径迹峰值年龄为66. 4~78. 6Ma的热事件,该期热事件可能为相山矿田最晚一期酸性铀成矿热事件。相山矿田66. 4~78. 6Ma的铀成矿热事件,与华南花岗岩型热液铀矿床的区域成矿热事件时代耦合,该发现对华南火山岩型铀矿成矿时代的重新认识,对火山岩型、花岗岩型铀矿床成矿统一性认识具有重要意义。  相似文献   

5.
The effect of uranium added in ecologically relevant concentrations (1 × 10−5 and 1 × 10−6 M) to stable multispecies biofilms was studied by electrochemical oxygen microsensors with tip diameters of 10 μm and by confocal laser fluorescence microscopy (CLSM). The microsensor profile measurements in the stable multispecies biofilms exposed to uranium showed that the oxygen concentration decreased faster with increasing biofilm depth compared to the uranium free biofilms. In the uranium containing biofilms, the oxygen consumption, calculated from the steady-state microprofiles, showed high consumption rates of up to 61.7 nmol cm−3 s−1 in the top layer (0-70 μm) and much lower consumption rates in the lower zone of the biofilms. Staining experiments with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 4,6-diamidino-2-phenylindole (DAPI) confirmed the high respiratory activities of the bacteria in the upper layer. Analysis of the amplified 16S rRNA gene fragments showed that the addition of uranium in ecologically relevant concentrations did not change the bacterial diversity in the stable multispecies biofilms and is therefore not responsible for the different oxygen profiles in the biofilms. The fast decrease in the oxygen concentrations in the biofilm profiles showed that the bacteria in the top region of the biofilms, i.e., the metabolically most active biofilm zone, battle the toxic effects of aqueous uranium with an increased respiratory activity. This increased respiratory activity results in O2 depleted zones closer to the biofilm/air interface which may trigger uranium redox processes, since suitable redox partners, e.g., extracellular polymeric substance (EPS) and other organics (e.g., metabolites), are sufficiently available in the biofilm porewaters. Such redox reactions may lead to precipitation of uranium (IV) solids and consequently to a removal of uranium from the aqueous phase.  相似文献   

6.
Estimations of the fission spectrum in xenon isotopes from the progenitor of the strange carbonaceous-chondrite xenon must take account of p-process nucleosynthesis if the latter is the source of anomalous 124,126Xe. Sample calculations of the p-process yields illustrate the magnitude of the effect, which can greatly increase the estimated 132Xe fission yield.  相似文献   

7.
A radiochemical neutron activation technique for uranium determination in rock and mineral samples is presented. The method is based on an alkaline fusion, a selective oxidation of iodine by a sodium-nitrite solution, followed by an iodine distillation technique for the isolation of the 133I produced in fission. The outlined scheme is rapid, sensitive and reliable. Determination of uranium in U.S. Geological Survey standard rocks (G-1, W-1, G-2, BCR-1, AGV-1, GSP-1), C.R.P.G. Nancy geochemical standards (GA, GH, BR, Mica-Fe, Mica-Mg), C.A.A.S. reference syenite rocks (SY-1, SY-2, SY-3) and other analysed rock samples are reported. These results are compared with those obtained by other methods.  相似文献   

8.
On statistical models for fission track counts   总被引:26,自引:0,他引:26  
The statistical basis for the usual analysis of fission track counts obtained by the external detector method is discussed and illustrated with examples. A consequence is that if any observed correlation between counts of spontaneous and induced tracks is due to heterogeneity in the density of uranium, then the model proposed by McGee and Johnson (1979)for assessing the experimental error is inappropriate and results based on it could be misleading. The same remark applies to the method proposed by Johnson, McGee, and Naeser (1979).  相似文献   

9.
The major stochastic elements in the fission track dating method are (i) the number of spontaneous fission tracks (N s ) in a sample, and (ii) the number of induced tracks (N i ) observed when the sample is irradiated with neutrons. The foundations for the statistical uncertainty in these measures are of two kinds: (i) there exists a definite probability of uranium fission by means of natural decay and by neutron activation, and (ii) within a crystal the distribution of uranium is not uniform and perhaps follows something like a Poisson law. In any event, the natural logarithm of the ratio (N s /N i ) is proportional to age. A plausible statistical fission track dating model should, therefore, start by considering the joint distribution of N s and N i . In this paper a joint bivariate normal model is described which allows the rigorous definition of the probability distributions of Ns, N i , the ratio N s /N i , and age itself. A general computer program (FISSION) has been developed to perform all the necessary computations. By accounting for the correlation between N s and N i , the statistical model here ascribes smaller standard errors to N s /N i (and therefore age) than do previous methods. In addition, the error associated with neutron flux is a significant factor in the age relationships and has been incorporated into the model.  相似文献   

10.
Diffusion coefficients for oxygen and hydrogen were determined from a series of natural uraninite-H2O experiments between 50 and 700 °C. Under hydrous conditions there are two diffusion mechanisms: (1) an initial extremely fast-path diffusion mechanism that overprinted the oxygen isotopic composition of the entire crystals regardless of temperature and (2) a slower volume-diffusive mechanism dominated by defect clusters that displace or eject nearest neighbor oxygen atoms to form two interstitial sites and two partial vacancies, and by vacancy migration. Using the volume diffusion coefficients in the temperature range of 400-600 °C, diffusion coefficients for oxygen can be represented by D = 1.90e−5 exp (−123,382 J/RT) cm2/s and for temperatures between 100 and 300 °C the diffusion coefficients can be represented by D = 1.95e−10 exp (−62484 J/RT) cm2/s, where the activation energies for uraninite are 123.4 and 62.5 kJ/mol, respectively. Hydrogen diffusion in uraninite appears to be controlled by similar mechanisms as oxygen. Using the volume diffusion coefficients for temperatures between 50 and 700 °C, diffusion coefficients for hydrogen can be represented by D = 9.28e−6 exp (−156,528 J/RT) cm2/s for temperatures between 450 and 700 °C and D = 1.39e−14 exp (−34518 J/RT) cm2/s for temperatures between 50 and 400 °C, where the activation energies for uraninite are 156.5 and 34.5 kJ/mol, respectively.Results from these new experiments have implications for isotopic exchange during natural UO2-water interactions. The exceptionally low δ18O values of natural uraninites (i.e. 32‰ to −19.5‰) from unconformity-type uranium deposits in Saskatchewan, in conjunction with theoretical and experimental uraninite-water and UO3-water fractionation factors, suggest that primary uranium mineralization is not in oxygen isotopic equilibrium with coeval clay and silicate minerals. The low δ18O values have been interpreted as resulting from the low temperature overprinting of primary uranium mineralization in the presence of relatively modern meteoric fluids having δ18O values of ca. −18‰, despite petrographic and U-Pb isotope data that indicate limited alteration. Our data show that the anomalously low oxygen isotopic composition of the uraninite from the Athabasca Basin can be due to meteoric water overprinting under reducing conditions, and meteoric water or groundwater can significantly affect the oxygen isotopic composition of spent nuclear fuel in a geologic repository, with minimal change to the chemical composition or texture. Moreover, the rather fast oxygen and hydrogen diffusion coefficients for uraninite, especially at low temperatures, suggest that oxygen and hydrogen diffusion may impart characteristic isotopic signals that can be used to track the route of fissile material.  相似文献   

11.
To study geochemical processes for migration and fixation of fissiogenic rare earth elements (REE) in association with uranium dissolution, in situ isotopic analyses using an ion microprobe were performed on U- and REE-bearing secondary minerals, such as coffinite, françoisite, uraniferous goethite, and uraninite found in a sandstone layer 30 to 110 cm beneath a natural fission reactor at Bangombé, Gabon. Phosphate minerals such as phosphatian coffinite and françoisite with depleted 235U (235U/238U = 0.00609 to 0.00638) contained large amount of fissiogenic light REE, while micro-sized uraninite grains in a solid bitumen aggregate have normal U isotopic values (235U/238U = 0.00725) and small amount of fissiogenic REE components. The proportions of fissiogenic and non-fissiogenic REE components in four samples from the core of BAX03 vary in depth ranging from 30 cm to 130 cm beneath the reactor, which suggests mixing between fissiogenic isotopes from the reactor and non-fissiogenic isotopes from original minerals in the sandstone. Significant chemical fractionation was observed between Ce and the other REE in the secondary minerals, which shows evidence of an oxidizing atmosphere during their formation. Pb-isotopic analyses of individual minerals do not directly provide chronological information because of the disturbance of U-Pb decay system due to recent geologic alteration. However, systematic Pb-isotopic results from all of the minerals reveal the mobilization of fissiogenic isotopes, Pb and U from the reactor in association with dolerite dyke intrusion ∼0.798 Ga ago and the formation of the secondary minerals by mixing event between 2.05 Ga-old original minerals and reactor materials due to recent alteration.  相似文献   

12.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

13.
Investigation of fossil charged-particle track densities in various mineral phases of three meteorites—Estherville, Nakhla and Odessa—coupled with U content determination, has led to the evaluation of various contributions to the total fossil track density, including those due to the spontaneous fission of 238U and 244Pu. A fission-track age for Estherville of around 4 × 109 yr is found, which is thought to reflect slow cooling of the parent body. A Pu track excess of (106 ± 9): 1 over the spontaneous fission of 238U is found in Odessa diopside, which is larger than may be allówed on a simple ‘continuous synthesis’ model for the production of heavy elements prior to solar system formation. Possible explanations for this value are discussed, including fractionation of Pu relative to U. No detectable U was found in Nakhla diopside, and a measurable contribution of track densities from the fission of superheavy elements is ruled out on the basis of track-length measurements and laboratory calibration with Fe ions.  相似文献   

14.
In order to investigate radioactive decay of 130Ba and 132Ba which have half-lives on the order 1020-1021 a, the isotopic composition of xenon has been measured in 3.5 Ga barite of the Dresser Formation, Pilbara, Western Australia. The analyzed samples were collected at about 86 m depth from a diamond drill core (Pilbara Drilling Project). The fact that the sample has been shielded from modern cosmic ray exposure reduces the number of potentially interfering production pathways, simplifying interpretation of the Xe isotope spectrum. This spectrum is clearly distinct from that of either modern or ancient atmospheric Xe. A strong excess of 130Xe is identified, as well as other isotopic excursions which are attributed to mass-dependent isotopic fractionation and contributions from products of uranium fission. The mass-dependent fractionation, estimated at 2.1 ± 0.3% amu−1, can be accounted for by mutual diffusion and Rayleigh distillation during barite formation that is consistent with geological constraints. After correction for mass-dependent fractionation, the concentrations of fissiogenic Xe isotopes demonstrate that the U-Xe isotope system has remained closed over 3.5 Ga. From the excess of 130Xe, the two successive electron capture half life of this isotope is estimated at 6.0 ± 1.1 × 1020 a, which is 3.4 times faster than previously estimated (Meshik et al., 2001). We could not find evidence of 132Ba decay within our Xe isotope spectra.  相似文献   

15.
Andradites and spessartines contain enough uranium to make these minerals interesting for fission track dating. Almandines and pyropes usually are not favourable.  相似文献   

16.
Fission track annealing experiments for vermiculite mineral have been performed under optimised etching conditions and a correction curve translating track length reduction to track density reduction has been constructed. The blocking/closing temperature of the fission track system in the mineral has been calculated to be 125°±30° C. The corrected fission track age of vermiculite from Kasipatnam (Visakhapatnam), South India, has been calculated as 544±14 Ma. The activation energy and average uranium concentration of the mineral are 1.7 eV and 9.9×10?8 gg?1 respectively.  相似文献   

17.
The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d−1) compared to the circumneutral pH soil (0.43 ± 0.31 mM d−1), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.  相似文献   

18.
Open-system behaviour of uraniferous shales, which has been known for many years, has discouraged attempts to use U-Pb geochronology to date sedimentary systems. Techniques now available can facilitate better understanding of their geochemical evolution and their possible use in geochronometry. For the U-rich Alton (G. listeri) Marine Band, a combined fission track mapping, electron optical and sequential chemical extraction study confirms that uranium is incorporated into francolite, an early diagenetic precipitate. U-Pb analyses of uranium-rich (>1000 ppm) francolite nodules are discordant and imply ages ∼50-150 Ma younger than the date of sedimentation. Pb isotopic analysis suggests that uranium daughters continually leaked from the francolite, 238U daughters being released more efficiently than those of 235U. Extrapolation of the U-Pb data to concordia produces an age consistent with the time of sedimentation. These features are also displayed by other uranium-rich shales such as the Swedish Kolm Measures, despite uranium being incorporated into different phases. Preferential loss of 238U daughters from fine-grained particles due to alpha recoil could explain the unusual U-Pb isotopic composition, in both examples. Further work would be justified to investigate the application of U-Pb isotopic analysis of such material to date sedimentary sequences.  相似文献   

19.
Ba isotopic studies of the Oklo and Bangombé natural fission reactors in east Gabon provide information on the geochemical behavior of radioactive Cs (135Cs and 137Cs) in a geological medium. Large isotopic deviations derived from fissiogenic Ba were found in chemical leachates of the reactor uraninites. The fissiogenic Ba isotopic patterns calculated by subtracting the non-fissiogenic component are classified into three types that show different magnifications of chemical fractionation between Cs and Ba. In addition, the isotopic signatures of fissiogenic 135Ba, 137Ba and 138Ba suggest an early differentiation between Cs and Ba of less than 20 years after the production of fissiogenic Cs and Ba. On the other hand, only small excesses of 135Ba (ε < +1.8) and/or 137Ba (ε < +1.3) were identified in some clay samples, which might have resulted from selective adsorption of 135Cs and 137Cs that migrated from the reactors by differentiation.  相似文献   

20.
We introduce a simple method to simulate the “ion explosion spike” mechanism of fission track formation within the framework of classical molecular dynamics. The method is applied to six apatite compositions and the resulting tracks are compared with each other as well as with the damage produced by another mechanism—the “Displacement spike”. In contrast to experimentally observed tracks, the radii of simulated tracks are not dependent on their direction in the crystal. Since the simulations model accurately the elastic response of apatites, this suggests that the experimentally observed difference in track radii for tracks along different crystal directions is not entirely caused by anisotropy in the elasticity of apatite. We suggest that anisotropy in the interactions between the electric fields of fission fragments and the crystal ions is a major factor in the final radii of fission tracks. In fluorapatite, the simulations also reveal the formation of small clusters of fluorite-like material in the core of the fission track, a phenomenon which has yet to be confirmed experimentally.
J. A. L. RaboneEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号