首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of either pre- or post-burst emission can provide substantial new information about the burst source and its local environment. We have data from serveral events serendipitously in or near the OSSE field of view at the time of the burst. We present pre- and post-burst flux limits from one such event, GRB 940301. The OSSE data for other periods when scheduled observations have included burst locations will enable us to search for pre- and post- burst emission on many time scales.  相似文献   

2.
We searched for anomalously long gamma-ray bursts (GRBs) in the archival records of the Burst and Transient Sources Experiment (BATSE). Ten obvious superlong (>500 s) GRBs with almost continuous emission episodes were found. Nine of these events were known from the BATSE catalog, but five had no duration estimates; we found one burst for the first time. We also detected events with emission episodes separated by a long period of quiescence (up to ~1000 s) with a total duration of 1000–2000 s. In the latter case, we cannot reach an unequivocal conclusion about a common origin of the episodes due to the BATSE poor angular resolution. However, for most of these pairs, the probability of independent GRBs coinciding is much lower than unity, and the probability that all of these are coincidences is ~10?8. All of the events have a hardness ratio (the ratio of the count rates in different energy channels) typical of GRBs, and their unique duration is unlikely to be related to their high redshifts. Superlong bursts do not differ in their properties from typical long (>2 s) GRBs. We estimated the fraction of superlong GRBs (>500 s) among the long (>2 s)GRBs in the BATSE sample with fluxes up to 0.1 ph cm?2 s?1 to be between 0.3 and 0.5%, which is higher than the estimate based on the BATSE catalog.  相似文献   

3.
Gamma-ray burst spectroscopy has at times been thought of as the key to understanding these mysterious events, and at others as a source of disappointment and confusion. Early spectral measurements contained evidence for cyclotron-line-like absorption and emission features. These results were the main anchor for the galactic neutron star paradigm for the origin of gamma-ray bursts. Ginga provided striking confirmation with evidence in three bursts for cyclotron absorption with both first and second harmonics present. The absorption line energies were consistent with the teragauss magnetic fields expected for neutron stars. The BATSE experiment on CGRO has dealt a severe blow to this paradigm. BATSE has found no evidence for the expected galactic anisotropy and also no evidence for cyclotron lines. The exact degree of inconsistency between BATSE and earlier GRB line results remains a complicated and unresolved question. In general, burst spectra display a wide variety of both spectral and temporal behavior. In essentially all bursts where spectral measurements are possible, the spectrum evolves during the burst. This spectral complexity and variability has presented researchers with a challenging task. At the present time, only the broadest correlations and characterizations are in hand. This paper will; 1) give a brief historical overview of GRB spectroscopic measurements and 2) provide a summary of the current observational situation with emphasis on the BATSE/Ginga controversy.  相似文献   

4.
EGRET on the Compton Gamma Ray Observatory has detected 5 gammaray bursts above 30 MeV. The sub-MeV emission, as detected by BATSE, for these 5 bursts has the largest fluence,F, and peak intensity,I, of any of the BATSE detected bursts within the EGRET field of view. The BATSE data reported in the 2B catalog and the EGRET exposure,E, are combined to select additional bursts with largeF ×E andI ×E. The EGRET data for these bright BATSE bursts are searched for prompt, as well as delayed, emission above 30 MeV. The average properties of the >30 MeV emission are obtained by adding the EGRET data from the 5 bursts. On average the fluence is greater than 15% of the fluence detected by BATSE below an MeV, and the average spectrum is flatter than the spectrum from 1-30 MeV.  相似文献   

5.
Finding an optical-UV counterpart to a gamma ray burst may solve the burst mystery, and therefore many searches in this wavelength band are planned or underway. To both predict detectability and understand the implications of any upper limits, we extrapolate the optical-UV fluxes from the fitted gamma ray spectra of 54 bright BATSE bursts. Based on a simple extrapolation of the burst spectrum, only the most sensitive detectors, such as the ETC and HETE, will be able to detect a few (5) bursts per year.  相似文献   

6.
Temporal aspects of the gamma-ray burst phenomenon are reviewed in a hierarchical schema. The macrocosm - burst profiles taken as a whole - is fairly well characterized. The bimodal duration distribution can be framed in terms of discretization of pulse structures. The average burst envelope is slightly asymmetric, an aspect possibly related to spectral softening. Burst durations are longer for dim BATSE bursts, an effect explainable by either cosmic time dilation or a luminosity function governed by special relativistic beaming, or a combination. GeV emission, persisting up to thousands of seconds after burst cessation at keV-MeV energies is one of the most challenging features of bursts. On the timescale of pulses structures (the mesocosm), some properties mirror the macrocosm: rise/decay asymmetry; wider pulses and longer intervals between pulses in dim bursts than in bright ones; and the tendency of pulses to soften with time. A central clue to the burst mechanism may be the organization in time and energy, manifest as pulses, for both long and short bursts. Burst profiles appear to be well represented by pulses, accounting for the vast majority of emission in the BATSE energy band. In the microcosm, existence of a higher frequency component - with properties possibly unlike those of pulses - has not been well addressed.  相似文献   

7.
In the relativistic fireball model, the afterglow of a gamma-ray burst (GRB) is produced by synchrotron radiation of the electrons accelerated in the external shock that emerges as the relativistic flow moves. According to this model, the afterglow peaks on a time scale of ~10 s when observed in the soft gamma-ray band. The peak flux can be high enough to be detected by modern all-sky monitors. We investigate the emission from short (ΔT<1 s) GRBs on a time scale t≈10 s using BATSE/CGRO data. A significant flux is recorded for ~20% of the events. In most cases, the observed persistent emission can be explained in terms of the model as an early burst afterglow. No early afterglows of most short GRBs are observed. The model parameters for these bursts are constrained.  相似文献   

8.
Claims continue to be made that detector selection effects can explain the deviation of the gamma-ray burst brightness distributions from the -3/2 power law expected for homogeneous burst sources. However, these effects are insufficient to explain the BATSE observations. The BATSE sensitivity threshold does vary with time, independent of the burst brightness; however, a homogeneous distribution of standard candle sources would still produce a -3/2 power law. The variation in the threshold does affect inhomogeneous source models. As an example, the effect of a time-varyingC min on theC max/C min distribution of an extended Galactic halo model is shown here. To fit the BATSEC max/C min distribution including a varyingC min requires a larger observing distance (relative to the scale-height of the halo) than for a constantC min; however, the observations can still be fit using the halo models.  相似文献   

9.
The celestial coordinates of gamma-ray burst sources observed with BATSE on GRO are automatically determined and distributed in real time to members of the global scientific community. These data are now being used by more than 20 operations to enable searches for associated transients in a variety of other wavelength or energy regimes to identify the burst source objects. The minimum total delay time from the onset of a burst to the receipt of its coordinates by distant experimenters can be under 4 sec, less than the duration of a typical GRB, and the maximum total delay is 7 sec, or longer, depending on the distribution method. Some improvements to the BACODINE system and a summary of the follow-up observations made by some of the sites are given.  相似文献   

10.
We study a sample of bright, long Burst and Transient Source Experiment (BATSE) gamma-ray burst (GRB) light curves in the 200 s before the detection of the GRB prompt emission. We find that in a sizable fraction of cases (∼20 per cent) there is evidence of emission above the background coming from the same direction as the GRB. This emission is characterized by a softer spectrum with respect to the main spectrum and contains a small fraction (0.1–1 per cent) of the total event counts. The precursors have typical delays of several tens of seconds extending (in few cases) up to 200 s (the limit of the investigated period). Their spectra are typically non-thermal power-law spectra, aside from a few cases. Such long delays and the non-thermal origin of their spectra are hard to reconcile with any model for the progenitor.  相似文献   

11.
No absorption lines between 15 and 100 keV have been detected in burst spectra accumulated by BATSE. Almost 250 bursts have been inspected visually, and a computerized search has begun. Our simulations show that BATSE could indeed detect lines similar to those observed byGinga in strong bursts, and our tests of the detectors' actual capabilities demonstrate they function as understood. The apparent discrepancy between BATSE andGinga is not yet compelling, and therefore the BATSE nondetections do not invalidate theGinga detections. Nonetheless, the absence of BATSE line detections indicates a low line-occurrence frequency.  相似文献   

12.
Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 1052.5 erg. The underlying physics of the correlation is unclear at present.  相似文献   

13.
Some models of gamma-ray bursts suggest that their spectrum may extend into the energy range above 10 GeV, i.e. above energies accessible with CGRO. Data taken with the HEGRA extensive air shower array are used to search for very high energetic gamma-ray burst counterparts above 1 TeV. First results from the search for BATSE correlated and BATSE independent bursts are presented.  相似文献   

14.
本文假定γ暴来自相对论性Beaming,其方向满足随机分布,γ暴在自己的静止参考系中满足标准烛光和幂律谱假设.假设暴的发生率密度在Ω=1,A=0的Friedmann宇宙模型下,共动坐标系中是常数,模型对于Beaming的速度非常敏感,当络仑兹因子г值小于10幂律谱指数小于1时,计算的统计分布与弱暴的BATSE数据及强暴的PVO数据分布一致.  相似文献   

15.
We analyze the sky distribution of various types of cosmic gamma-ray bursts (GRBs): short, long, and intermediate; they are determined by burst duration T 90 (T 90 is the time during which 90% of the burst energy is accumulated). We have found an anisotropy in the distribution of intermediate (2 s < T 90 < 8 s) and short (T 90 < 8 s) GRBs in the form of spots with an enhanced GRB concentration near the Galactic coordinates l=115° and b=30°. Given the BATSE nonuniform exposure function, the statistical significance of the anisotropy is 99.89% for intermediate GRBs and 99.99% for short GRBs. Thus, we suggest that this anisotropy has a natural origin and is not caused by BATSE instrumental effects.  相似文献   

16.
We study time-resolved spectra of the prompt emission of Swift γ-ray bursts (GRB). Our goal is to see if previous BATSE claims of the existence of a large amount of spectra with the low-energy photon indices harder than 2/3 are consistent with Swift data. We perform a systematic search of the episodes of the spectral hardening down to the photon indices  ≤2/3  in the prompt emission spectra of Swift GRBs. We show that the data of the Burst Alert Telescope (BAT) instrument on board of Swift are consistent with BATSE data, if one takes into account differences between the two instruments. Much lower statistics of the very hard spectra in Swift GRBs are explained by the smaller field of view and narrower energy band of the BAT telescope.  相似文献   

17.
The fractal dimensionality of the distribution of gamma-ray bursts over the celestial sphere has been investigated. Current data from the BATSE experiment were used. A value of D2 ≈ 2 is obtained, corresponding to a uniform spatial distribution of burst sources. Translated from Astrofizika, Vol. 42, No. 2, pp. 219–224, April–June, 1999  相似文献   

18.
《New Astronomy》2003,8(3):213-229
A flare-CME event on April 15, 1998 is studied with data of Nobeyama Radio Polarimeters (NoRP) and Heliograph (NoRH), the radio spectrometers of Chinese National Astronomical Observatories (1.0–2.0 GHz and 2.6–2.8 GHz), and the Astrophysical Institute of Postdam (200–800 MHz), as well as the data of YOHKOH, SOHO, BATSE, and GOES. There were strong fluctuations superposed on the initial phase of the BATSE hard X-ray burst, and the radio burst at 1.0–2.0 GHz with a group of type III-like positive and negative frequency drift pairs, which may be interpreted as the process of magnetic reconnection or particle acceleration in corona. A type II-like burst with a series of pulsations at 200–800 MHz followed the maximum phase of the radio and hard X-ray burst, and slowly drifted to lower frequencies with typical zebra feature. After 10 min of that, a similar dynamic spectrum was recorded at 2.6–3.8 GHz, where the type II-like signal drifted to higher frequencies with a series of pulsations and zebra structures. The polarization sense was strongly RCP at 2.6–3.8 GHz, and weakly LCP at 1.0–2.0 GHz, which was confirmed by the observations of NoRP. The radiation mechanism of these pulsations may be caused by the electron cyclotron maser instability. The local magnetic field strength and source height are estimated based on the gyro-synchrotron second harmonic emission. The ambient plasma density is calculated from the YOHKOH/SXT data. The ratio between the electron plasma frequency and gyro-frequency is around 1.3, which corresponds to the reversal value from extraordinary mode (LCP) to ordinary mode (RCP). Moreover, both the time scale and the modularity of an individual pulse increase statistically with the increase in the burst flux, which may be explained by the acceleration process of non-thermal electrons in the shock wave-fronts propagated upward and downward. Therefore, the radio observations may provide an important signature that flare and CME are triggered simultaneously by magnetic reconnection and are associated with the formation of bi-directional shock waves.  相似文献   

19.
The change of source characteristics during the transition from the impulsive phase to the post-burst phase is investigated for cm bursts on a statistical basis. The results are the following: (1) The sudden decrease of the circular polarization degree is found almost invariably at the transition; typically from 20–30% down to a few percent. (2) Some bursts show remarkable source expansions in the post-burst phase. There are no cases in which impulsive bursts have larger source size than the associated post-burst increases. (3) Type III bursts which are indicative of non-thermal phenomena are associated with the impulsive phase but not with the post-burst phase. Implications of these observed results are discussed.  相似文献   

20.
A solar radio type II burst (which was seen as two patches of emission, one during 07:00–07:13 UT and other one during 07:20–07:35 UT) was observed on 22 March 1998 using the Madurai radio spectrograph. A broad range of data (from Culgoora and Hiraiso spectrographs, white-light data from SOHO/LASCO and X-ray data from Yohkoh and GOES satellites) was also studied for this event, which was analyzed in comparison with these supplementary data. In addition, the conditions associated with this shock were analyzed quantitatively. From the above investigations, the following conclusions have been made. The temporal relationship between H-alpha flare and burst has shown that the active region AR 8185 is the source of this type II burst. A bright front feature observed with LASCO is also associated with this type II burst and active region AR 8185. The time profile of the shock derived from the first patch of this type II burst coincides with the flare starting time. Also, within error limits, the start time of the CME is same as the flare. Hence, it is not possible to decide whether the type II originated in the flare or was driven by CME. In addition, the investigations of the second patch alone has provided the following results. The inferred shock speed for the second patch of emission is lower than the first and closer to the CME speed. The emission occurred below 50 MHz. These conditions imply that this patch may be a separate burst which might have been produced by the CME alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号