首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

2.
The effect of a magnetic field on the nonlinear capillary instability of a fluid jet is examined using the method of multiple scales. It is a well-known result that a sufficiently strong magnetic field can, in the limit of zero viscosity and resistivity, completely suppress the linear capillary instability. It turns out that while the nonlinear (modulational) instability cannot be completely suppressed, the presence of a magnetic field does greatly increase the range of stable wave numbers.  相似文献   

3.
The effect of a uniform axial magenetic field on the nonlinear instability of a self-gravitating infinite cylinder is examined. Using the method of multiple scales, it is found that while the nonlinear (modulational) instability cannot be completely suppressed, the presence of a magnetic field does increase the range of stable wave numbers. The evolution of the amplitude is governed by a non-linear Schrödinger equation which gives the criterion for modulational instability.Department of Chemical Engineering and Technology.Department of Mathematics.  相似文献   

4.
A theoretical study is made of the whistler mode cyclotron instability both in linear and nonlinear regimes in conjunction with the generation of VLF emissions in the magnetosphere. For the nonlinear treatment, a well-established quasilinear method is used and some physical processes of the cyclotron instability viz. energy conservation, mechanism of instability and frequency change of the excited emissions are clarified. The results are applied to some types of the triggered VLF emissions; whistler triggered emissions and artificially stimulated emissions (ASE). It is found that whistler triggered emissions excited around the upper cutoff frequencies of whistlers may be explained by the whistler mode cyclotron instability by a model distribution function inferred from satellite data. In order to see a nonlinear evolution of the whistler mode cyclotron instability, computer simulations were carried out and it is shown that the change of frequency with time of whistler triggered emissions as well as characteristics of ASE are well explained by resonant nonlinear behaviour of whistler mode cyclotron instability considered in the present paper.  相似文献   

5.
A theoretical model is presented to investigate the existence, formation, and possible realization of nonlinear envelope ion acoustic solitary waves which accompany collisionless electron-positron-ion plasmas with high-energy electrons and positrons (represented by kappa distribution). By employing the reductive perturbation method, the hydrodynamic model and the Poisson equation are reduced to nonlinear Schr?dinger equation. The effects of the superthermal parameters, as well as ion-to-electron temperature ratio on the propagation and stability of the envelope solitary waves are examined. The superthermal parameters (ion-to-electron temperature ratio) give rise to instability (stability) of the solitary excitations, since the instability window is strongly modified. Finally, the present results should elucidate the excitation of the nonlinear ion-acoustic solitary wave packets in superthermal electron-positron-ion plasmas, particularly in interstellar medium.  相似文献   

6.
The gravitational instability in the dust layer of a protoplanetary disk with nonuniform dust density distributions in the direction vertical to the midplane is investigated. The linear analysis of the gravitational instability is performed. The following assumptions are used: (1) One fluid model is adopted, that is, difference of velocities between dust and gas are neglected. (2) The gas is incompressible. (3) Models are axisymmetric with respect to the rotation axis of the disk. Numerical results show that the critical density at the midplane is higher than the one for the uniform dust density distribution by Sekiya (1983, Prog. Theor. Phys. 69, 1116-1130). For the Gaussian dust density distribution, the critical density is 1.3 times higher, although we do not consider this dust density distribution to be realistic because of the shear instability in the dust layer. For the dust density distribution with a constant Richardson number, which is considered to be realized due to the shear instability, the critical density is 2.85 times higher and is independent of the value of the Richardson number. Further, if a constant Richardson number could decrease to the order of 0.001, the gravitational instability would be realized even for the dust to gas surface density ratio with the solar abundance. Our results give a new restriction on planetesimal formation by the gravitational instability.  相似文献   

7.
The isentropic thermal instability of media with a generalized heat-loss function and negative bulk viscosity condition are discussed. We obtain the nonlinear equation taking into account the nonlinear saturation of the isentropic instability. This equation describes the nonstationary evolution of acoustical waves in media with the isentropic instability. Its stationary solutions are investigated analytically. The most interesting solution is the self-sustained pulse. Using the numerical simulation of the nonlinear acoustical equation and the full system of one-dimensional non-stationary hydrodynamical equations, we showed the disintegration of the initial weak perturbation of compression into sequence of these self-sustained pulses in low-density PDRs.  相似文献   

8.
According to a widespread point of view, intensive electrostatic structures in the E‐region of the auroral ionosphere can be a consequence of the excitation of the modified two‐stream or Farley‐Buneman (FB) plasma turbulence. But in spite of the successes of the theoretical and experimental research of the auroral radar scattering, it is impossible to explain the existence of auroral echoes with large aspect angles (> 2 deg.), the wave propagation perpendicular to the electron drift velocity and wave scales less than 1 m. In this paper the coherent nonlinear interactions of three and four electrostatic FB‐waves are considered analytically and numerically. The evolution of the nonlinear waves is described by a system of magnetohydrodynamic equations. 1) It is shown that the interaction of three and four coherent waves is the main physical mechanism which leads to the saturation of the FB‐instability. 2) If no dissipative and dispersive effects occur, an explosive instability may be excited. 3) The main result of the interaction of coherent waves is the generation of nonlinear waves and nonlinear structures when the waves are damped linearly and propagate perpendicular to the electron drift velocity. This region corresponds to large aspect angles of the small‐scale waves. 4) Further, the wave interaction causes a nonlinear stabilization of the growth of the high‐frequency waves and a formation of local density structures of the charged particles. The results of the numerical models allow to analyse the possibility of scenarios of the two‐stream plasma instability in the collisional auroral E‐region.  相似文献   

9.
Thermal-convective-instability of a stellar atmosphere is investigated in the presences of a nonlinear magnetic field. A model proposed by Roberts (1981) in the context of neutron stars is used. The simultaneous effect of both nonlinear magnetic field and rotation is also considered. The criteria obtained for monotonic instability generalize the criterion derived by Defouw (1970) in the absence of magnetic field and rotation.  相似文献   

10.
The paper deals with a nonlinear instability of quasi-monochromatic VLF signals and whistlers in the Earth's magnetosphere due to induced scattering. The instability growth rates and the threshold values of the signal amplitude at which the instability occurs have been found. The instability is shown to be more effectively excited when the initial transverse VLF wave transforms into plasma oscillations at the lower hybrid resonance (LHR) frequency and may be responsible for the phenomena such as trigger LHR emission, the amplitude and phase modulation of artificial VLF signals and be the origin of some types of discrete VLF signals.  相似文献   

11.
The stability of coronal magnetic loops is investigated with the influence of the dense photosphere (line-tying) included. The stability method, based on the Finite Fourier Series method developed by Einaudi and Van Hoven (1981, 1983), is applied to two different equilibria and the approximate critical conditions for the onset of different azimuthal instabilities are investigated. It is shown that, for nearly force-free loops, the extended Suydam criterion, obtained by De Bruyne and Hood (1989) for localized modes, predicts the existence of a global kink instability when a localized mode is just destabilized. For loops with substantial gas pressure gradients it is the localized modes that are destabilized first of all and the extended Suydam criterion gives the necessary and sufficient conditions for an instability. In this latter case, the instability threshold for the kink mode is quite close to the localized mode threshold. Finally, it is shown that the growth times of the instabilities are comparable to the Aflvén travel times along the loop when the extended Suydam criterion is violated.  相似文献   

12.
The instability of electrostatic ion cyclotron waves to low frequency density modulations is considered and nonlinear equations are derived which describe its development in terms of a coherent four wave interaction. A dispersion relation for the linear phase of the instability is obtained and threshold conditions for marginal stability determined. It is shown, using data from recent optical observations, that the conditions necessary for the instability to occur in the auroral plasma would probably be satisfied and that modulational frequencies in agreement with the observations are obtained for plausible wave amplitudes. The nonlinear development of the instability is then studied and it is shown that substantial modulation can occur. It is suggested therefore that this instability could lead to the development of a strongly turbulent state.  相似文献   

13.
Satoshi Hinata 《Solar physics》1988,116(2):239-258
We have investigated nonlinear equilibrium states of a microscopic current filamentation (electrothermal instability) in solar atmosphere. The microscopic filamentation instability will develop for transition zone ion temperature plasmas, provided T e/Ti > 1, where T e and T i are the electron and ion temperatures, respectively. Since the temperature radio for a steady-state solar atmosphere is approximately unity, the electrothermal instability will develop only in a time-dependent solar atmosphere. Indeed, such a condition is provided by time-dependent currents, which seem to exist in many magnetic loops as recent analysis by Porter et al. (1987) indicates. When the onset condition for the electrothermal instability is satisfied, the instability drives a current filamentation to a nonlinear equilibrium state with a spatially periodic electron temperature variation with the wavelength comparable to several ion-Larmor radii. The amplitude of the periodic temperature variation may be so large that the transition layer temperature and coronal temperature plasmas may exist within several Larmor radii — coexistence of the transition zone and corona within the same macro-volume.  相似文献   

14.
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves and the nonlinear behaviour is governed by the nonlinear Burger's equation.  相似文献   

15.
地极移动的非线性动力机制   总被引:4,自引:1,他引:3  
王文均 《天文学报》1998,39(3):287-289
用非线性动力学原理和非线性振动方法,结合Chandler摆动的时间序列反演,证实了Chandler摆动的衰减能量是由周年激发的非线性共振所补充的.由高布锡归算的ILS参数,按共振激发模型反演出的Chandler摆动衰减指数和频率品质因数等结果,符合已有的大量基本结论,反演出的非齐次项的强迫频率基本都在周年频率的周围.非线性共振模型还表明,Chandler频率的不稳定性是由于存在频率转换和漂移,摆动振幅的不稳定性是由于存在共振跳跃,非线性的存在还将引出组合共振频率.同时用推广的最小公倍数证实和频差频的存在,提供了非整数的最小公倍数算法,为数论的非线性推广和在天文中的应用提供了工具.  相似文献   

16.
By taking into account the temporal as well as the spatial effects, a weakly nonlinear theory of the propagation of wave packets in the Kelvin-Helmholtz instability problem in the presence of uniform magnetic fields, acting along the surface of separation of two moving superposed fluids, is presented. With the use of the method of multiple scaling, the evolution of the amplitude of the two-dimensional wave packets, which is governed by a nonlinear Klein-Gordon equation, is derived. The various stability criteria arising out of this equation are examined. The nonlinear cut-off wavenumber, which separates the region of stability from that of instability, is determined.  相似文献   

17.
We investigate the nonlinear evolution of resistive tearing mode in a current sheet with a sheared flow in a long, thin cylinder. The results show that a hyperbolic secant (sech) flow field will lead to instability of the resistive tearing mode, formation of magnetic islands and rapid release of magnetic energy. The coupling between sheared flow and the tearing mode and interaction between suprathermal instabilities change the degree of shear in the magnetic field (the electric current gradient) and drive the development of the instability. This process may be one of the mechanisms of solar flares.  相似文献   

18.
A study is presented of the nonlinear self-modulation of low-frequency electrostatic dust acoustic waves (DAWs) propagating in a dusty plasma, within the theoretical framework of the nonextensive statistics proposed by Tsallis. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DAWs is obtained. The presence of the nonextensive electron/ion distribution is shown to influence the MI of the waves. Furthermore it is observed that nonextensive distributed ions has more effect on the MI of the DAW than electrons.  相似文献   

19.
In Part I of this paper (Paper I) we described an equilibrium model of a jet in the gravitational field corresponding to the rigid-rotation region of the galactic disk. We used linear stability analysis to find the waveguide-resonance instability of internal gravity waves due to the superreflection of these waves from the jet boundary. In this part of the paper, we perform nonlinear numerical 2D and 3D simulations of the development of this instability. We show that the shocks produced by this instability in the ambient medium of the jet are localized inside a cone with a large opening angle and are capable of producing features that are morphologically similar to those observed in galaxies with active nuclei (NGC 5252 for example).  相似文献   

20.
Using the Quantum hydrodynamic (QHD) model the modulational instability of electron-acoustic waves (EAWs) has been examined theoretically by deriving a nonlinear Schrodinger equation in a two-electron-populated relativistically degenerate super dense plasma. Through numerical analysis it is shown that the relativistic degeneracy parameter significantly influence the stability conditions and the formation and properties of the envelop solitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号