首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Phase-referenced observations of 13 star-forming regions in the  2Π1/2, J = 1/2  transition of rotationally excited OH at 4765 MHz have been carried out using MERLIN. Two of the regions were also observed at 4750 MHz and one at 4660 MHz. There were 10 maser detections at 4765 MHz and three non-detections. There were no detections at 4750 and 4660 MHz. The 4765-MHz masers have brightness temperatures of  ∼107 K  at MERLIN resolution (∼50 mas). Several cases of 4765-MHz masers overlapping in position and velocity with 1720- and 1665-MHz masers are reported. There are also isolated 4765-MHz masers with peak flux densities ≥30 times that of any ground-state counterpart. Most of the 4.7-GHz maser spots are unresolved at 50-mas angular resolution, but in four of the nearest sources the maser spots are resolved, indicating a characteristic size for 4765-MHz maser regions of ∼100 au. In W3(OH) we discovered that 20 per cent of the 4765-MHz emission comes from a narrow low-brightness filament that stretches north–south for ∼1.0 arcec (∼2200 au) between two previously known 4765-MHz maser spots. The filament appears in projection against the H  ii region and has a brightness temperature of  ∼4 × 105 K  . There are matching absorption features in mainline transitions of highly excited OH. The filament may trace a shock front in a rotating disc.  相似文献   

2.
Class II methanol masers are found in close association with OH main-line masers in many star-forming regions, where both are believed to flag the early stages in the evolution of a massive star. We have studied the formation of masers in methanol and OH under identical model conditions for the first time. Infrared pumping by radiation from warm dust at temperatures >100 K can account for the known maser lines in both molecules, many of which develop simultaneously under a range of conditions. The masers form most readily in cooler gas (<100 K) of moderately high density  (105–108 cm-3)  , although higher gas temperatures and/or lower densities are also compatible with maser action. The agreement between the current model (developed for methanol) and the established OH maser trends is very encouraging, and we anticipate that further tuning of the model will further improve such agreement.
We find the gas-phase molecular abundance to be the key determinant of observable maser activity for both molecules. Sources exhibiting both 6668-MHz methanol and 1665-MHz OH masers have a typical flux density ratio of 16; our model suggests that this may be a consequence of maser saturation. We find that the 1665-MHz maser approaches the saturated limit for OH abundances >10−7.3, while the 6668-MHz maser requires a greater methanol abundance >10−6. OH-favoured sources are likely to be less abundant in methanol, while methanol-favoured sources may be less abundant in OH or experiencing warm (>125 K), dense (∼107 cm−3) conditions. These abundance requirements offer the possibility of tying the appearance of masers to the age of the new-born star via models of gas-phase chemical evolution following the evaporation of icy grain mantles.  相似文献   

3.
We present new X-ray and H  I 21-cm data on the poor cluster of galaxies Abell 3581. The ASCA spectrum requires a low temperature, has a strong requirement for excess absorption and shows evidence for multi-temperature components. The ROSAT HRI image shows the strongly peaked emission indicative of a cooling flow. Despite the low temperature (∼ 1.5–2.0 keV) and low luminosity (∼ 2 × 1042 erg s−1 in the 2–10 keV band), Abell 3581 has a mass deposition rate ∼ 80 M⊙ yr−1 which is larger than found for other nearby low-luminosity objects. VLA observations in the 21-cm band set velocity width and spin temperature dependent limits on the column density of atomic hydrogen.  相似文献   

4.
We have used the Australia Telescope Compact Array (ATCA) to make a sensitive  (5 σ ≃100 mJy)  search for maser emission from the 4765-MHz 2Π1/2   F =1→0  transition of OH. 55 star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward 14 sites, with 10 of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2   F =1→1  transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550−0.979. If confirmed this would be only the second maser discovered from this transition.
The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well-studied star formation regions has led to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than 1720-MHz OH maser emission is. Combining our results with those of previous high-resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predicts any conditions in which the 1665-, 6035- and 4765-MHz transitions are inverted simultaneously.  相似文献   

5.
The z  = 2.286  IRAS galaxy F10214 + 4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214 + 4724, with clear evidence for three distinct components: lines of width ∼ 1000 km s−1 from a Seyfert 2 nucleus; ≲ 200 km s−1 lines which are likely to be associated with star formation; and a broad (∼ 4000 km s−1) C  III ] 1909-Å emission line which is blueshifted by ∼ 1000 km s−1 with respect to the Seyfert 2 lines. Our study of the Seyfert 2 component leads to several new results. (i) From the double-peaked structure in the Lyα line, and the lack of Lyβ, we argue that the Lyα photons have emerged through a neutral column of N H ∼ 2.5 × 1025 m−2, possibly located within the AGN narrow-line region, as proposed for several high-redshift radio galaxies. (ii) The resonant O  VI 1032, 1036-Å doublet (previously identified as Lyβ) is in an optically thick (1:1) ratio. At face value this implies an extreme density ( n e ∼ 1017 m−3) more typical of broad-line region clouds. However, we attribute this instead to the damping wings of Lyβ from the resonant absorption. (iii) A tentative detection of He  II 1086 suggests little extinction in the rest frame ultraviolet.  相似文献   

6.
We report the detection of the slow-moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well-resolved narrow (full width at zero intensity, FWZI ∼180 km s−1) P Cygni profile, both in Hα and Hβ, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density ( n  ≥ 107 cm−3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.  相似文献   

7.
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4–6, at a level of  12 ± 3 mJy km s−1  , corresponding to OH production rate  2.8 × 1028  molecules s−1 (Despois et al. inversion model, or  1.0 × 1028 s−1  for the Schleicher & A'Hearn model). We did not detect the HCN 1–0 line with the Mopra 22-m telescope over the period July 2–6. The 3σ limit of 0.06 K km s−1 for HCN on July 4 after the impact gives the limit to the HCN production rate of  <1.8 × 1025 s−1  . We did not detect the HCN 1–0 line, 6.7 GHz CH3OH line or 3.4-mm continuum with the Australia Telescope Compact Array (ATCA) on July 4, giving further limits on any small-scale structure due to an outburst. The 3σ limit on HCN emission of 2.5 K km s−1 from the ATCA around impact corresponds to limit < 4 × 1029 HCN molecules released by the impact.  相似文献   

8.
The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with 0.1-arcsec spatial resolution, at velocity spacing  0.09 km s−1  , and in both senses of circular polarization reveals 59 small diameter maser spots. The spots are scattered over 2 arcsec, coincident with a strong ultracompact H  ii region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from −1.1 to −4.7 mG, with a median value of −3.5 mG. Excited state masers of OH at 6035 and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of −5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong H  ii regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.  相似文献   

9.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

10.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

11.
We present high angular resolution MERLIN observations of the 18-cm OH maser and continuum emission associated with the active core of the ultraluminous infrared galaxy Markarian 273. The continuum emission comes from three distinct regions in the central arcsecond of the galaxy. The brightest region of emission has a double-peaked structure which is spatially coincident with similar structures observed at 6 cm and 2.2 μm. The peak of the OH maser emission is spatially coincident with the peak in the continuum. For the first time the maser emission is spatially resolved, allowing us to measure the gas motion within the central 100 pc of the galaxy. Maser emission is found in both the 1665- and 1667-MHz lines, with no systematic offset found in the spatial locations of the two lines. The brighter component of the maser emission shows ordered motion and is aligned along the axis of the double-peaked structure in the brightest continuum region. The gas motion enables us to estimate the central mass density to be 850±50 M pc−3, which corresponds to a total mass of ≈1.5×108 M.  相似文献   

12.
We present subarcsec angular resolution observations of the neutral gas in the nearby starburst galaxy NGC 520. The central kpc region of NGC 520 contains an area of significantly enhanced star formation. The radio continuum structure of this region resolves into ∼10 continuum components. By comparing the flux densities of the brightest of these components at 1.4 GHz with published 15-GHz data we infer that these components detected at 1.4 and 1.6 GHz are related to the starburst and are most likely to be collections of several supernova remnants within the beam. None of these components is consistent with emission from an active galactic nuclei. Both neutral hydrogen (H  i ) and hydroxyl (OH) absorption lines are observed against the continuum emission, along with a weak OH maser feature probably related to the star formation activity in this galaxy. Strong H  i absorption  ( N H∼ 1022 atoms cm−2)  traces a velocity gradient of 0.5 km s−1 pc−1 across the central kpc of NGC 520. The H  i absorption velocity structure is consistent with the velocity gradients observed in both the OH absorption and in CO emission observations. The neutral gas velocity structure observed within the central kpc of NGC 520 is attributed to a kpc-scale ring or disc. It is also noted that the velocity gradients observed for these neutral gas components appear to differ with the velocity gradients observed from optical ionized emission lines. This apparent disagreement is discussed and attributed to the extinction of the optical emission from the actual centre of this source hence implying that optical ionized emission lines are only detected from regions with significantly different radii to those sampled by the observations presented here.  相似文献   

13.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

14.
We report on the analysis of a ∼60-ks XMM–Newton observation of the bright, narrow emission line quasar PG1211+143. Absorption lines are seen in both European Photon Imaging Camera and Reflection Grating Spectrometer spectra corresponding to H- and He-like ions of Fe, S, Mg, Ne, O, N and C. The observed line energies indicate an ionized outflow velocity of ∼24 000 km s−1. The highest energy lines require a column density of   N H∼ 5 × 1023 cm−2  , at an ionization parameter of  log ξ∼ 3.4  . If the origin of this high-velocity outflow lies in matter being driven from the inner disc, then the flow is likely to be optically thick within a radius of ∼130 Schwarzschild radii, providing a natural explanation for the big blue bump (and strong soft X-ray) emission in PG1211+143.  相似文献   

15.
OH maser emission from the circumstellar envelope of the M-type supergiant VX Sagittarii has been mapped at 1612 MHz in both hands of circular polarization using MERLIN, with an angular resolution of 0.4 arcsec and a velocity resolution of 0.3 km s−1. Four likely Zeeman pairs of maser components are identified, each with a similar Zeeman splitting. The inferred magnetic field strength is approximately −1 mG in each case, with the field directed towards us. The Zeeman components lie ∼ 1400 au from the star. The data lend support to the dipole magnetic field model which has recently been suggested for this circumstellar envelope.  相似文献   

16.
We investigate the possibility of interstellar masers in transitions of the methanol isotopomers CH3OD, 13CH3OH and CH318OH, and of CH3SH. The model used, in which masers are pumped through the first and second torsionally excited states by IR radiation, has accounted successfully for the Class II masers in main species methanol, 12CH316OH. Several potential maser candidates are identified for CH3OD, their detectability depending on the enrichment of this species in star-forming regions. In 13CH3OH and CH318OH the best maser candidates are direct counterparts of the well-known 6.7- and 12.2-GHz methanol masers, but the lower interstellar abundance of these substituted species means that the expected brightness is greatly reduced. The maser candidates in CH3SH are also weak. By comparing these species we find that the large b -component of the dipole moment in methanol plays a significant role in its propensity to form masers, as does the strong torsion–rotation interaction due to the light hydroxyl frame. Thus the exceptional brightness of interstellar methanol masers is due to a favourable combination of molecular properties as well as high interstellar abundance.  相似文献   

17.
We have used the ATNF Mopra antenna and the SEST antenna to search in the directions of several class II methanol maser sources for emission from six methanol transitions in the frequency range 85–115 GHz. The transitions were selected from excitation studies as potential maser candidates. Methanol emission at one or more frequencies was detected from five of the maser sources, as well as from Orion KL. Although the lines are weak, we find evidence of maser origin for three new lines in G345.01+1.79, and possibly one new line in G9.62+0.20.
The observations, together with published maser observations at other frequencies, are compared with methanol maser modelling for G345.01+1.79 and NGC 6334F. We find that the majority of observations in both sources are consistent with a warm dust (175 K) pumping model at hydrogen density ∼106 cm−3 and methanol column density ∼ 5×1017 cm−2. The substantial differences between the maser spectra in the two sources can be attributed to the geometry of the maser region.  相似文献   

18.
We present MERLIN neutral hydrogen absorption measurements against supernova remnants in the central starburst region of M82 with an angular resolution of ∼ 0.4 arcsec. We detect H  I absorption or set significant upper limits against 33 supernova remnants from which we have been able to deduce column densities. Hence, using these measurements, we are able to probe the neutral hydrogen distribution and dynamics of the interstellar medium in M82 along 33 lines of sight on linear scales of order 1 pc.   Our results show column densities ranging from <1.6 to >30 × 1021 atom cm−2 with the highest values seen towards the edge of the 250-pc 'ring'. The absorption velocities show a gradient of 7.3 ± 4 km s−1 arcsec−1, consistent with rotation parameters of this 'ring' inferred from other measurements. The absorption velocities against individual remnants show deviations of typically 30 km s−1 from simple solid body rotation, and a number show multiple velocity absorption features. Although some of these deviations may be the result of the remnants being embedded at different depths within the neutral gas, the velocities cannot be explained by a simple rotating ring.  相似文献   

19.
We present the results of a long (∼93 ks) XMM–Newton observation of the bright BL-Lac object  PKS 0548-322 ( z = 0.069)  . Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength  λ= 23.33 ± 0.01 Å  , which we interpret as O  vi Kα absorption at   z = 0.058  , i.e. ∼3000 km s−1 from the background object. The observed equivalent width of the absorption line, ∼30 mÅ, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density of   N O VI∼ 2 × 1016 cm−2  and turbulence with a Doppler velocity parameter   b > 100 km s−1  . Within the limitations of our RGS spectrum, no O  vii or O  v Kα absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is  ∼2.5 × 105 K  , with significantly lower or higher values being excluded by our limits on O  v or O  vii . If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through O  vi absorption. The existence of such a high column density absorber, much stronger than any previously detected one in O  vi , would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.  相似文献   

20.
The maser site OH 323.459−0.079 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yielded a series of maps at a velocity spacing of 0.18 km s−1, in both senses of circular polarization, with tenth-arcsec spatial resolution. Many small-diameter maser spots were detected within a 2-arcsec region. Pairs of spots with the same position, but with right- and left-hand circular polarization offset in frequency, reveal Zeeman splitting. Six pairs were found, and in four cases, the pairs at 1667 and 1665 MHz mutually corroborate the derived values of magnetic field and (central) kinematic velocity. Over the whole site, magnetic field estimates range from +1.47 to +4.13 mG with a median value of +2.5 mG. The excited state of OH at 6035 MHz also displays Zeeman pairs revealing a similar magnetic field, and we show that the most prominent of these pairs coincides with the most prominent pair at 1665 and 1667 MHz.
We also compared the morphology and kinematics at 1665 and 1667 MHz with those of maser emission from the excited state of OH at 6035 MHz and from methanol at 6668 MHz. All three varieties of masers appear intermingled, and associated with an ultracompact H  ii region. In many respects we find that OH 323.459−0.079 is similar to W3(OH), one of the few other maser sites yet studied in comparable detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号