首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the bounds of a theoretical scheme treating consistently gravitational interaction as dynamical (gauge) field in flat space-time, an expression was obtained for the density of energy-momentum-tension of gravitational field in vacuum around a collapsed object. A case was studied of an interacting static spherically-symmetric field of a collapsar in vacuum with taking into account of input of all the possible components (spin states of virtual gravitons) into the energy for the symmetric tensor of second rank ik . The radius of the sphere filled by matter for the collapsar of massM may achieve values up toGM/c 2.  相似文献   

2.
L. Mollwo 《Solar physics》1973,30(2):497-511
The generation of space charge waves by micro instabilities of the Harris type and their conversion into electromagnetic waves is discussed in the framework of the dispersion curves of the extraordinary wave mode in the warm plasma. Acceleration of electrons as also nonlinear interactions of waves are taken into account. A survey of the parameter regions of the Harris instabilities is given. Distinct values p / c and p / c result, enabling the instability as well as the conversion. The moving type IVmA bursts, and on the other side the impulsive cm-bursts and the first phase of type IV bursts are correlated to different values p / c and corresponding heights in the corona. The space charge waves can produce hydromagnetic waves by parametric excitation, too (type II bursts). The proposed mechanism is discussed with respect to the energy balance and to the magnetic configurations derived from observations with the Culgoora radioheliograph.  相似文献   

3.
In the bounds of the totally nonmetric model of gravitational interaction theory (gravidynamics) the strong field of a compact object (a collapsar) — an analogue to the black hole in general relativity — is investigated. In the case of utmost strong (for gravidynamics) collapsar, field a region filled, by matter (a bag) must have the radius equal tor *=GM/c 2 10 km at the total collapsar massM7M . Only half of the collapsar mass is contained in the bag, the other one of its total energy (Mc 2 ) is distributed in the space surrounding the bag in the form of a coat, i.e., in the form of continuous medium (a relativistic gas) of virtual gravitons. The object must have the surface (the bag surface) with absolutely definite physical properties. The potential of such a surface is finite (+=-c 2/2) and the particle mass finding itself in a bound state on the bag surface is two times less than the mass of the same particle in a totally free state. The bag surface can perform periodic oscillations (pulsations) with the periodGM/c 2 3×10–5 s. An energy density inside the bag with the utmost strong gravitational field or with an utmost dense coat shrouding the bag is determined by gravitation theory constants only and depends on the distance to the bag centerr in the following way: (r)=(c 5 /8G)r –2. The bag matter in the case is most probably in the state of quark-gluon plasma.  相似文献   

4.
In 1979 I developed a special-relativistic analysis explaining the discrepancy of observed redshifts of spiral NGC 4319 and its companion quasar Markarian 205 by considering besides the Lorentz time dilatation also the gravitational redshift due to the gravitational field of Markarian 205 interpreted in terms of accretion of mass onto a black hole ejected from NGC 4319. In the present paper, a general-relativistic analysis is given. Numerical results of the special and general theories do not differ from each other significantly and admit the conclusion that the radius,r, of the radiating region of Markarian 205 is of the order of the tidal radius of black hole. Several models for various values of the ratio ofr to the Schwarzschild radius,r s, are constructed. Models with 8.5r/r s8.7 seem to be most realistic. It becomes clear that the interpretation of quasars in terms of huge black holes accreting stars can explain, in principle, the observed redshifts of quasars ejected from parent galaxies.  相似文献   

5.
The redshift c caused by the scattering of photons in the chromosphere of Canopus and in the interstellar matter is obtained from the measurements of wavelength, intensity and equivalent width of 191 spectral lines published in 1942. The result is c with a new radial velocityV r =–3.3±2.4 km s–1. The reliability of the results is briefly discussed.  相似文献   

6.
The tidal force effects of a spherical galaxy passing head-on through a disk galaxy have been studied at various regions of the disk galaxy and for various orientations of the disk galaxy with respect to the direction of relative motion of the two galaxies. The density distribution of the disk galaxy is taken to be, (r)=ce–4r/R , where c is the central density andR is the radius of the disk. The density distribution of the spherical galaxy is taken to be that of a oolytrope of indexn=4. It is found that as a result of the collision, through the central parts and the outer parts of the disk galaxy remain intact, the region in between these two regions disrupts. Thus a ring galaxy with a nucleus embedded in the ring-i.e., a ring galaxy of the RN-type, is formed.  相似文献   

7.
The accretion of hot slowly rotating gas onto a supermassive black hole is considered. The important case where the velocities of turbulent pulsations at the Bondi radius r B are low, compared to the speed of sound c s, is studied. Turbulence is probably responsible for the appearance of random average rotation. Although the angular momentum at r B is low, it gives rise to the centrifugal barrier at a depth r c = l 2 /GM BH ? r B, that hinders supersonic accretion. The numerical solution of the problem of hot gas accretion with finite angular momentum is found taking into account electron thermal conductivity and bremsstrahlung energy losses of two temperature plasma for density and temperature near Bondi radius similar to observed in M87 galaxy. The saturation of the Spitzer thermal conductivity was also taken into account. The parameters of the saturated electron thermal conductivity were chosen similar to the parameters used in the numerical simulations of interaction of the strong laser beam radiation with plasma targets. These parameters are confirmed in the experiments. It is shown that joint action of electron thermal conductivity and free-free radiation leads to the effective cooling of accreting plasma and formation of the subsonic settling of accreting gas above the zone of a centrifugal barrier. A toroidal condensation and a hollow funnel that separates the torus from the black hole emerge near the barrier. The barrier divides the flow into two regions: (1) the settling zone with slow subKeplerian rotation and (2) the zone with rapid supersonic nearly Keplerian rotation. Existence of the centrifugal barrier leads to significant decrease of the accretion rate ? in comparison with the critical Bondi solution for γ = 5/3 for the same values of density and temperature of the hot gas near Bondi radius. Shear instabilities in the torus and related friction cause the gas to spread slowly along spirals in the equatorial plane in two directions.As a result, outer (r > r c) and inner (r < r c) disks are formed. The gas enters the immediate neighborhood of the black hole or the zone of the internal ADAF flow along the accretion disk (r < r c). Since the angular momentum is conserved, the outer disk removes outward an excess of angular momentum along with part of the matter falling into the torus. It is possible, that such outer Keplerian disk was observed by Hubble Space Telescope around the nucleus of the M87 galaxy in the optical emission lines. We discuss shortly the characteristic times during which the accretion of the gas with developed turbulence should lead to the changes in the orientation of the torus, accretion disk and, possibly, of the jet.  相似文献   

8.
A theory of pulsar radio emission generation, in which the observed waves are produced directly by the maser-type plasma instabilities on the anomalous cyclotron-Cherenkov resonance and the Cherenkov-drift resonance , is capable of explaining the main observational characteristics of pulsar radio emission. The instabilities are due to the interaction of the fast particles of the primary beam and from the tail of the distribution with the normal modes of a strongly magnetized one-dimensional electron-positron plasma. The waves emitted at these resonances are vacuum-like electromagnetic waves that may leave the magnetosphere directly. The cyclotron-Cherenkov instability is responsible for core emission pattern and the Cherenkov-drift instability produces conal emission. The conditions for the development of the cyclotron-Cherenkov instability are satisfied for the both typical and millisecond pulsars provided that the streaming energy of the bulk plasma is not very high γ p = 5 ÷ 10. In a typical pulsar the cyclotron-Cherenkov and Cherenkov-drift resonances occur in the outer parts of magnetosphere at r res ≈ 109cm. This theory can account for various aspects of pulsar phenomenology including the morphology of the pulses, their polarization properties and spectral behavior. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
It has been suggested by Usov (1992) that accreting white dwarfs, collapsing to neutron stars may be the sources of the gamma-ray bursts observed at cosmological distances, provided they rotate very fast and have enormously high magnetic fields. In this model the burst's duration is given by the ratio of pulsar kinetic energy and magneticdipole luminosity, so that in order to account for the shortest ( 0.1 s) bursts, the pulsars must rotate very fast (with periodP 0.5 ms) and have magnetic fields of 1016 - 1017 G. Though the high pulsar frequency was anticipated (Qadir and Rafique, 1986) and has been shown to be plausible (Abramowicz, 1990), the extremely high magnetic fields seem anomalous as observed neutron stars have fields below 1013 G.The problem with Usov's proposal is reduced by incorporating the relativistic corrections for fast rotating magnetic dipoles (Belinskyet al., 1994) or magnetic stars (De Paolis and Qadir, 1994). These corrections substantially enhance the radiation efficiency due to the existence of a magnetic synchrotron effect so that the magnetic field required for the explanation of the shortest gamma-ray bursts is strongly reduced. As such the model becomes much more plausible.  相似文献   

10.
We study the classical problem of two-dimensional motion of a particle in the field of a central force proportional to a real power of the distancer. for negative energy and (0, 2), each energy levelI h is foliated by the invariant toriI hc of constant angular momentumc and, by Liouville-Arnold's theorem, the flow on eachI hc is conjugated to a linear flow of rotation number h (c).A well-known result asserts that if we require h (c) to be rational for every value ofh andc, the, must be equal to one (Kepler's problem). In this paper we prove that for almost every (0, 2) h (c) is a non-constant continuous function ofc, for everyh<0. In particular, we deduce that motion under central potentials is generically non-periodic.Partially supported by CIRIT under grant No. EE88/2.  相似文献   

11.
A fully relativistic electron maser is proposed for the explanation of certain non-thermal solar and stellar radio bursts. This mechanism (maser synchrotron) is based on a gyroresonant interaction between waves and electrons of high energies and uses the free energy contained in an electronic distribution function that peaks for energies around 1 MeV.By a calculation of the growth rates of the three electromagnetic modes, we show that the X-mode prevails for values of p/ cup to 2 or 3. This result is very different from the standard cyclotron maser case where such values of p/ clead to quench the X-mode growth. Hence, the synchrotron maser instability appears to be a direct and efficient amplification process for considerably larger physical conditions than the cyclotron maser. In addition, the radiation, emitted over the second gyroharmonic, freely propagates without a strong reabsorbtion at the 2 clayer. All these points can constitute major advantages of this mechanism in an astrophysical context.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

12.
The collisionless deceleration of electron streams responsible for type IIIb bursts has been investigated. For this the difference between the mean velocities of electron streams at plasma levels corresponding to 25 and 12.5 MHz, on one hand, at 12.5 and 6.25 MHz, on the other hand, is estimated. The mean velocity of electron streams between these levels is determined by the time delay in the moments of arrival of radio bursts from these levels. The distance between plasma levels is determined under the assumption that the (statistical) mean velocity of sources of the diffusive type III bursts is constant and equal toc/3 at all considered levels of the solar corona.It is shown that under this assumption the electron streams with the initial velocities of the order of 0.4–0.8c undergo a sufficient deceleration which is characterized by a decrease in their mean velocity by 15–17% between plasma levels at 25 to 6.25 MHz. The stream deceleration becomes more essential with the growth of the initial velocity of the stream. On the other hand, the deceleration disappears when the initial velocity of the stream is of the order of 0.35c. This critical velocityV s * - 0.35c is assumed to define a boundary between two different expansion regimes of fast electrons moving in the solar corona. In the first regime (V s >V s * ) the induced scattering of plasma waves produces energy losses of the streams. A decrease in the velocities of streams up to the value of the order of 0.35c is due to these losses. In the second regime (V s -V s * ) a quasilinear expansion of streams is realized. In this case the energy losses of the streams are almost absent.  相似文献   

13.
A static spherically-symmetric model, based on an exact solution of Einstein's equation, gives the permissible matter density 2×1014 g cm–3. If we use the change in the ratio of central density to the radiusr=a (i.e., central density per unit radius (0/a), we call it radius density) minimum, we have estimated the upper limit of the density variation parameter () and minimum mass limit of a superdense star like a neutron star. This limit gives an idea of the domain where the neutron abundance with negligible number of electrons and protons (may be treated as pure neutrons) and equilibrium in neutrons begins.  相似文献   

14.
We report multifrequency observations of storm continuum and other radio bursts. Based on their positional study and their correlation with other coronal and photospheric features, we deduce that the storm source is located in the magnetic field lines lying above a single bipolar active region. Energetic electrons trapped in the magnetic structures above the spots must be responsible for the storm radiation. We show that spontaneous emission of Langmuir waves by anisotropic distributions can explain both storm continuum and bursts self-consistently. Whenever the collisional damping ( c ) is more than the growth (- A ), there is a steady emission responsible for the continuum, and whenever c = - A (which may be satisfied randomly) there is a sudden jump in T b giving rise to bursts. The number density of energetic particles required to explain the storm continuum at 73.8, 50, and 30.9 MHz frequencies is estimated to lie in the limits n b /n e 10–10–10–9 in the context of the present observations. The brightness spectrum of the storm continuum is computed and compared with observations.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

15.
The Crosa and Boynton (1980) empirical model for discrete mass transfer in Her X-1 is further developed. The photometric features of the light curve (peaks of an hour duration and 0.3–0.7 m amplitude, steps near orbital phase =0); and the linear polarization bursts are assumed to be due to the formation and eclipses of the plasma blobs produced by discrete transfer of matter from optical star surface and its interaction with the accretion disc rim. The long lifetime (20h) of the cold (3×104 K) blob extending up to 1011 cm above the disc plane, as well as the deep X-ray flickerings (300 s) during the X-ray absorption dips are assumed to arise from a dispersal of accreting matter by the Rayleigh-Taylor instability in a blob moving through a hot corona of the disk atT c =3×106 K andn c =3×1011 cm–3. Thermal equilibrium in the corona and in the blobs are supported by X-ray flux. Within the first few hours after its formation a blob disintegrates into drops withr=5×109 cm,T=3×104 K, andn=3×1013 cm–3 which move then along Keplerian orbits. Frictional interactions of the drops with the corona destroy them on a 20h time-scale. The proposed model makes it possible to interpret the diverse observational facts and to predict numerous observational displays in the optical, UV, and X-ray bands. The first results of our optical-spectrum observations of blobs are briefly described.  相似文献   

16.
Will (1971) has discussed a possible anisotropy in the gravitational constantG. Suppose that the attractive gravitational force between two particles of massesm 1 andm 2 is given by the usual expressionF=–Gm 1 m 2 r/r 3, wherer is the separation vector. Ifc is the velocity of light in vacuo and if 1 r r/r, he expresses the anisotropy byG=G [1+(v·1 r/c)2], whereG is a constant,v is identified practically as the velocity of the Sun around the galaxy, and 1. Will's suggestion is to look for such an effect in the laboratory.The purpose of the present paper is to look for such an effect in the solar system, wherem 1 andm 2 become the masses of the Sun and a planet or of the Earth and the Moon. For simplicity I consider only those planets whose orbits are close to the ecliptic, so that the angle betweenv and the plane of the ecliptic is about 59°.With the above force, the resulting two-body problem is completely solvable. The results are these. If =1, there is an increase in mean motion of 7 parts in 108, a periodic fluctuation in true longitude with period half that of the orbit and amplitude ranging possibly from 0.01 to 0.02, and periodic fluctuations in the radius vector, with period also one half that for the orbit. The amplitudes are: 2.7 km for Mercury, 5.1 km for Venus, 7.0 km for Mars, 18 m for the Moon about the Earth, and 28 cm for a close artificial satellite with inclination 23°. The more conservative estimate <0.0115 would reduce these values by the factor 70.  相似文献   

17.
The structure and stability of rapidly uniformly rotating supermassive stars is investigated using the full post-Newtonian equations of hydrodynamics. The standard model of a supermassive star, a polytrope of index three, is adopted. All rotation terms up to and including those of order 4, where is the angular velocity, are retained. The effects of rotation and post-Newtonian gravitation on the classical configuration are explicitly evaluated and shown to be very small. The dynamical stability of the model is treated by using the binding energy approach. The most massive objects are found to be dynamically unstable when =1/c 2.p c / c 2.2 × 10–3, wherep c and c are the central pressure and density, respectively. Hence, the higher-order terms considered in this analysis do not appreciably alter the previously known stability limits.The maximum mass that can be stabilized by uniform rotation in the hydrogen-burning phase is found to be 2.9×106 M , whereM is the solar mass. The corresponding nuclear-generated luminosity of 6×1044 erg/sec–1 is too small for the model to be applicable to the quasi-stellar objects. The maximum kinetic energy of a uniformly rotating supermassive star is found to be 3×10–5 Mc 2, whereM is the mass of the star. Masses in excess of 1010 M are required if an adequate store of kinetic energy is to be made available to a pulsar like QSO. However such large masses have rotation periods in excess of 100 yr and thus could not account for any short term periodic variability. It is concluded then that the uniformly rotating supermassive star does not provide a suitable base for a model of a QSO.  相似文献   

18.
A common mechanism for both X-ray and-ray bursters is proposed on the basis that a window can be created transiently in the polar cap of a degenerate star, a white dwarf for X-ray bursts and a neutron star for-ray bursts. The window exposes transiently a hot degenerate sub-layer of the star at shallow depth, from which escapes blackbody flux for a source at temperature 3 kev with window radius 10 km in the case of X-ray bursts and for a source at temperature 300 kev with window radius 0.5 km in the case of-ray bursts.  相似文献   

19.
In the spherically-symmetric case, a computer simulation of the electron acceleration inside the outflow channel of the pulsar magnetosphere is produced. The stationary motion of electrons is shown to be unstable in the case of > c, where is a parameter describing inhomogeneity of the background charge, and c is its critical value. The arising non-stationary motion of electrons leads to a formation of electron bunches, which move chaotically. The mean electron energy appears to be much greater at the non-stationary motion, than at the stationary one. The time-averaged parameters of the non-stationary electron flow and their dependence upon have been investigated. Distributions of the mean values of parameters (charge density, electron velocity, electric field energy density, pressure, and internal energy of the gas composed of the electron bunches) over the magnetosphere altitude have been investigated. The mean spectra of the charge density have been obtained. The results of numerical investigation of the spherically-symmetric model are used for estimation of the electron energy and of the electron flux in the case of the more realistic model. The radioemission loss is estimated, and is shown to be large enough for explaining the radiopulsar phenomenon as a thermal radioemission of the pulsar magnetosphere. In particular, such common properties of the pulsar radioemission as the high bright temperature, the sharp radioemission directivity, and the characteristic turn-over of the radioemission spectrum at the frequency of the order 108 Hz are found a natural explanation in frames of this model.  相似文献   

20.
The Machian models of isotropic expanding universes according to the “inertia-free” gravo-dynamics imply the equations between the instantan values H0 and q0 of the HUBBLE parameter H, the acceleration q, and the matter density o. Therefore, in Machian universes with linear expansion q0 = 0 the energy integral E = -1/2ϵc2 is zero and the matter density becomes (with H02R02 = c2/3) (f0 the Newtonian gravitational constant). This is the critical density in general relativistic cosmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号