首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An efficient approach for evaluating storm tide return levels along the southeastern coastline of Australia under present and future climate conditions is described. Storm surge height probabilities for the present climate are estimated using hydrodynamic model simulations of surges identified in recent tide gauge records. Tides are then accounted for using a joint probability method. Storm tide height return levels obtained in this way are similar to those obtained from the direct analysis of tide gauge records. The impact of climate change on extreme sea levels is explored by adding a variety of estimates of mean sea level rise and by forcing the model with modified wind data. It is shown that climate change has the potential to reduce average recurrence intervals of present climate 1 in 100 year storm tide levels along much of the northern Bass Strait coast to between 1 and 2 years by the year 2070.  相似文献   

2.
Geodynamic status, seismo-tectonic environment, and geophysical signatures of the Bay of Bengal do not support the occurrence of seismogenic tsunami. Since thrust fault and its intensity and magnitude of rupture are the key tectonic elements of tsunamigenic seismic sources, the study reveals that such characteristics of fault-rupture and seismic sources do not occur in most of the Bay of Bengal except a small segment in the Andaman–Nicobar subduction zone. The inferred segment of the Andaman–Nicobar subduction zone is considered for generating a model of the deformation field arising from fluid-driven source. The model suggests local tsunami with insignificant inundation potential along the coast of northern Bay of Bengal. The bathymetric profile and the sea floor configuration of the northern Bay of Bengal play an important role in flattening the waveform through defocusing process. The direction of motion of the Indian plate makes an angle of about 30° with the direction of the opening of Andaman Sea. The opening of Andaman Sea and the direction of plate motion of the Indian plate results in the formation of Andaman trench where the subducting plate dives more obliquely than that in the Sunda trench in the south. The oblique subduction reduces significantly the possibilities of dominant thrust faulting in the Andaman subduction zone. Further, north of Andaman subduction in the Bengal–Arakan coast, there is no active subduction. On the otherhand, much greater volume of sediments (in excess of 20 km) in the Bengal–Arakan segment reduces the possibilities of mega rupture of the ocean floor. The water depth (≈1,000 m) along most of the northern Bay of Bengal plate margin is not optimum for any significant tsunami generation. Hence, very weak possibility of any significant tsunami is suggested that based on the interpretation of geodynamic status, seismo-tectonic environment, and geophysical signatures of the Andaman subduction zone and the Bengal–Arakan coast.  相似文献   

3.
The head Bay of Bengal region, which covers part of Orissa and west Bengal in India as well as Bangladesh, is one of the most vulnerable regions of extreme sea levels associated with severe tropical cyclones which cause extensive damage. There has been extensive loss of life and property due to extreme events in this region. Shallow nature of the Bay, presence of Ganga-Brahmaputra-Meghna deltaic system and high tidal range are responsible for storm surges in this region. In view of this a location specific fine resolution numerical modelis developed for the simulation of storm surges. To represent mostof the islands and rivers in this region a 3km grid resolution is adopted. Several numerical experiments are carried out to compute the storm surges using the wind stress forcings representative of 1974, 1985, 1988, 1989, 1991, 1994 and 1999 cyclones, which crossed this region. The model computed surges are in good agreement with the available observations/estimates.  相似文献   

4.
Bay of Bengal cyclone extreme water level estimate uncertainty   总被引:4,自引:3,他引:1  
  相似文献   

5.
The inter-annual variation and linear trends of the surface air temperature in the regions in and around the Bay of Bengal have been studied using the time series data of monthly and annual mean temperature for 20–40 years period within 1951–1990. The study area extends from Pusma Camp of Nepal in the north and Kuala Lumpur of Malaysia in the south and between 80--100 ° E. The annual variation of temperature has also been studied using the mean monthly temperature for the variable time frames 1961–1975, 1976–1990 and 1961–1990. The trend of temperature has been analyzed using linear regression technique with the data from 1961–1990, which showed that the warming trend is dominant over the study areas except for a few stations. It has been found that Nepal shows predominant warming trends. Bangladesh and the adjacent areas of India and the northern part of Bay of Bengal adjacent to the Bangladesh coast have shown strong warming trends of the annual temperature with maximum at Dhaka (0.037 °C/year). The near equatorial zone, i.e., southern India, Sri Lanka and part of Thailand and Malaysia (Kuala Lumpur) shows warming trends in the annual mean temperature with strong warming at Pamban and Anuradhapura (around 0.04 °C/year). The cooling trends have been observed at a few stations including Port Blair, Yangoon and Cuttack. Further analysis shows the presence of prominent ENSO scale of variations with time period 4–7 years and 2–3 years for almost all the stations. The decadal mode with T >7 years is present in some data series. The results of the variations of temperature with respect to the Southern Oscillation Index (SOI) show that SOI has some negative correlation with temperature for most of the stations except those in the extreme northeast. It has been found that positive anomaly of temperature has been observed for El Niño events and negative anomaly for the La Nina events.  相似文献   

6.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

7.
Pham  Dat T.  Switzer  Adam D.  Huerta  Gabriel  Meltzner  Aron J.  Nguyen  Huan M.  Hill  Emma M. 《Natural Hazards》2019,98(3):969-1001

With sea levels projected to rise as a result of climate change, it is imperative to understand not only long-term average trends, but also the spatial and temporal patterns of extreme sea level. In this study, we use a comprehensive set of 30 tide gauges spanning 1954–2014 to characterize the spatial and temporal variations of extreme sea level around the low-lying and densely populated margins of the South China Sea. We also explore the long-term evolution of extreme sea level by applying a dynamic linear model for the generalized extreme value distribution (DLM-GEV), which can be used for assessing the changes in extreme sea levels with time. Our results show that the sea-level maxima distributions range from ~?90 to 400 cm and occur seasonally across the South China Sea. In general, the sea-level maxima at northern tide gauges are approximately 25–30% higher than those in the south and are highest in summer as tropical cyclone-induced surges dominate the northern signal. In contrast, the smaller signal in the south is dominated by monsoonal winds in the winter. The trends of extreme high percentiles of sea-level values are broadly consistent with the changes in mean sea level. The DLM-GEV model characterizes the interannual variability of extreme sea level, and hence, the 50-year return levels at most tide gauges. We find small but statistically significant correlations between extreme sea level and both the Pacific Decadal Oscillation and El Niño/Southern Oscillation. Our study provides new insight into the dynamic relationships between extreme sea level, mean sea level and the tidal cycle in the South China Sea, which can contribute to preparing for coastal risks at multi-decadal timescales.

  相似文献   

8.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

9.
One of the regions of the globe that is frequently and very significantly affected by storm surges is Bangladesh. These high amplitude water-level oscillations are generated by the meteorological forcing fields due to tropical cyclones in the Bay of Bengal. The tide also plays a significant role in determining the time history of the total water level. Due to the greenhouse warming associated with the increasing levels of carbon dioxide in the atmosphere, it is expected that the frequency and intensity of tropical cyclones in the Bay of Bengal will increase substantially within the next 50 to 100 years. This new breed of tropical cyclones, referred to as hypercanes, will generate storm surges on the coast of Bangladesh which could attain amplitudes of up to 15 m, much greater than the present-day amplitudes of up to 6 m. Various mitigation procedures are discussed and compared.  相似文献   

10.
The paper presents comprehensive statistical analyses of winds and water levels in Mobile Bay, Alabama, based on long-term meteorological and tidal observations at several locations. A procedure has been developed to select the most probable parent distribution function from a list of candidate distributions. The theoretical functions that fit the data best enable us to predict the extreme values of winds and water levels at different return periods. We have demonstrated the importance of dividing the winds into hurricane and nonhurricane seasons and separating astronomical tides from weather-driven water level changes. The statistical analysis suggests that the wind speed averaged over 8 min at Dauphin Island, Alabama, at the 100-year return period would be 48.9 m/s, which is equivalent to a sustained 1-min wind of 205 km/h, a very strong category 3 hurricane on the Saffir-Simpson scale. The probability distribution models predict that the 100-year maximum water level would be 3.23 m above the mean lower low water (MLLW) level at the bay entrance and 3.41 m above the MLLW level near the head of the bay, respectively. Extremely low water levels important to navigation are also found. Application of the predicted extreme winds and surges is illustrated through the development of a storm wave atlas in the estuary. It is expected that the methodology and results presented in this paper will benefit the management and preservation of the ecosystems and habitats in Mobile Bay.  相似文献   

11.
Moon  I.-J.  Oh  I. S.  Murty  T.  Youn  Y.-H. 《Natural Hazards》2003,29(3):485-500
On 19 August 1997 Typhoon Winnie brought unusually strong and extensive coastal flooding from storm surges to the west coast of Korea, which was farenough from the typhoon's center to lack significant local wind and pressure forcing.Sea levels at some tidal stations broke 36-year records and resulted in property damages of $18,000,000. This study investigated the causes of the unusual high sea levels by using an Astronomical-Meteorological Index (AMI) and a coupled ocean wave-circulation model developed by the present authors. The AMI analysis and the numerical simulation of the surge event showed that the major cause of the high sea levels was not the standard inverse barometric effect supplemented by water piling up along the coast by the wind field of the typhoon as is usual for a typical storm surge, but rather an enhanced tidal forcing from the perigean spring tide and water transported into the Yellow Sea by the currents generated by the typhoon. The numerical results also indicated that the transported water accounted for about 50% of the increased sea levels. Another cause for the coastal flooding was the resonance coupling of the Yellow Sea (with a natural normal mode period of 37.8 h) and the predominant period of the surge (36.5 h).  相似文献   

12.
In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30‡E-120‡E, 30‡S30‡N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student’s t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2 m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2 m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered as an advance indicator of the possible behavior of the subsequent monsoon season. The distribution of net heat flux is predominantly negative over eastern Arabian Sea, Bay of Bengal and Indian Ocean. Anomaly between the two extreme monsoon years in post 1980 (i.e., 1988 and 1987) shows that shortwave flux, latent heat flux and net heat flux indicate reversal in sign, particularly in south Indian Ocean. Variations of the heat budget components over four smaller sectors of Indian seas, namely Arabian Sea, Bay of Bengal and west Indian Ocean and east Indian Ocean show that a small sector of Arabian Sea is most dominant during May and other sectors showing reversal in sign of latent heat flux during monsoon season.  相似文献   

13.
The problem of storm surges is introduced briefly. The utility of passive microwave observations to study this phenomenon is pointed out. The reasons for the nonoccurrence of severe surges in the Bay of Bengal, during monsoon regimes, is discussed in this paper. It was demonstrated that the predominant reason for lack of severe surges over the Bay of Bengal coast is due to the absence of weak wind shear during monsoon seasons.Atmospheric Environment Service, Ice Center, Environment Canada, 373 Sussex Drive, Ottawa, Ontario, Canada K1A OH3.  相似文献   

14.
The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July–August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE-ε closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX.  相似文献   

15.
The Atlantic shoreline in Patagonia, southernmost South America, is a paraglacial coast that has undergone extensive erosion and retreat since the late Pleistocene, releasing a large volume of sand and gravel to southward littoral drift. Despite regional erosive conditions, accretionary landforms developed during the Holocene in three coastal reentrants. These are, from north to south along a 200 km long shoreline stretch: (1) the cuspate foreland that underlies Bustamante Point, in the Rı́o Gallegos Estuary; (2) the cuspate foreland with incipient spit underlying Dungeness Point, in the eastern Strait of Magellan; (3) the San Sebastián Bay tidal flat; and (4) the El Páramo Spit, partly enclosing the San Sebastián Bay. These accretionary landforms contain a record of relative sea level changes for approximately the past 7 ka, and indicate a tectonically driven drop of about 3 m during growth of Bustamante Point and of 1–2 m in the other areas. Differential sea level fall influenced development of the landforms, with slower rates favoring spit development in the south.  相似文献   

16.
A study has been carried out by comparing the extreme wind speeds estimated based on NCEP/NCAR reanalysis data for 100 years return period using Fischer Tippet-1 (commonly known as Gumbel) and Weibull distributions for three locations (off Goa, Visakhapatnam and Machilipatnam) in the north Indian Ocean. The wind dataset for Goa is compared with that from ERA-40 data. For higher wind speeds (12–20m s−1), NCEP wind speed has higher percentage of occurrence than that of ERA-40. Analysis has shown slight upward trend in the annual maximum wind for location off Machilipatnam with an increase of 1.2 cm s−1 per year and a decreasing trend of −1.3 cm s−1 per year in the case of Goa. The Weibull distribution with shape parameter 2 fits the annual maximum wind data better than FT-1 distribution.  相似文献   

17.
The Bay of Bengal is considered to be a low productive region compared to the Arabian Sea based on conventional seasonal observations. Such seasonal observations are not representative of a calendar year since the conventional approach might miss episodic high productive events associated with extreme atmospheric processes. We examined here the influence of extreme atmospheric events, such as heavy rainfall and cyclone Sidr, on phytoplankton biomass in the western Bay of Bengal using both in situ time-series observations and satellite derived Chlorophyll a (Chl a) and sea surface temperature (SST). Supply of nutrients through the runoff driven by episodic heavy rainfall (234 mm) on 4–5 October 2007 caused an increase in Chl a concentration by four times than the previous in the coastal Bay was observed within two weeks. Similar increase in Chl a, by 3 to 10 times, was observed on the right side of the cyclone Sidr track in the central Bay of Bengal after the cyclone Sidr. These two episodic events caused phytoplankton blooms in the western Bay of Bengal which enhanced ~40% of fishery production during October–December 2007 compared to that in the same period in 2006.  相似文献   

18.
Bay of Bengal is well known for less saline waters in the surface layer of northern Indian Ocean. High saline waters of the Bay are considered as an influx from the Arabian Sea within a depth range of 200 to 900 m. Some of the recent observations in the western Bay of Bengal have shown salinity values higher than those reported earlier (35-2 × 10−3). Such values are explained on the basis of regional climatology suggesting their local formation on the shallow continental shelf during pre-monsoon months and their subsequent distribution along the coast.  相似文献   

19.
Phenomenal storm surge levels associated with cyclones are common in East Coast of India. The coastal regions of Andhra Pradesh are in rapid stride of myriad marine infrastructural developments. The safe elevations of coastal structures need a long-term assessment of storm surge conditions. Hence, past 50 years (1949–1998), tropical cyclones hit the Bay are obtained from Fleet Naval Meteorological & Oceanographic Center, USA, and analyzed to assess the storm surge experienced around Kakinada and along south Andhra Pradesh coast. In this paper, authors implemented Rankin Hydromet Vortex model and Bretschneider’s wind stress formulation to hindcast the surge levels. It is seen from the hindcast data that the November, 1977 cyclone has generated highest surge of the order of 1.98 m. Extreme value analysis is carried out using Weibull distribution for long-term prediction. The results reveal that the surge for 1 in 100-year return period is 2.0 m. Further the highest surge in 50 years generated by the severe cyclone (1977) is numerically simulated using hydrodynamic model of Mike-21. The simulation results show that the Krishnapatnam, Nizampatnam and south of Kakinada have experienced a surge of 1.0, 1.5 and 0.75 m, respectively.  相似文献   

20.
BOBMEX-Pilot was organised from 23rd October–11th November, 1998 when the seasonal trough had already shifted to south Bay of Bengal. The activity during this period was marked by the development of a monsoon depression from 26th–29th October that weakened over the sea; onset of northeast monsoon along the east coast of India on 29th October; a low pressure area that formed on 2nd November over southwest Bay off Sri Lanka — southTamilnadu coast; and another cyclonic circulation that formed towards the end of the BOBMEX-Pilot period. This paper describes the development of these synoptic systems through synoptic charts and satellite data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号