首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The spatial distribution of vegetation pattern and vegetation cover fraction (VCF) was quantified with remote sensing data in the Hailiutu River basin, a semiarid area in North China. The moderate resolution imaging spectroradiometer normalized different vegetation index (NDVI) values for 4 years from 2008 to 2011 and field observation data were used to assess the impact of climate factors, landform and depth to water table on vegetation distribution at large scale. In the VCF map, 74 % of the study area is covered with low and low–medium density vegetation, 24 % of the catchment is occupied by medium–high and high-density vegetation, and 2 % of area is bare soil. The relationship between NDVI and climate factors indicated that NDVI is correlated with relative humidity and precipitation. In the river catchment, NDVI increases gradually from landform of sand dune, eolian sand soil to river valley; 92.4 % of low NDVI from 0.15 to 0.3 is mostly distributed in sand dunes and the vegetation type is shrubs. Crops, shrubs and some dry willows dominate in eolian sand soil and 82.5 % of the NDVI varies between 0.2 and 0.35. In the river valley, 70.4 % of NDVI ranges between 0.25 and 0.4, and grass, dry willow and some crops are the main plants. Shrubs development of Korshinsk peashrub and Salix psammophila are dependent on groundwater by analyzing NDVI response to groundwater depth. However, NDVI of Artemisia desertorum had little sensitivity to groundwater.  相似文献   

2.
为了解森林退化的原因,利用2000-2015年的MODIS NDVI数据,在分析贵州省植被变化趋势的基础上识别了归一化植被指数(NDVI)显著下降的区域,并在NDVI显著下降区选取面积大于10 km2的森林图斑为兴趣区,分析其内气候变化趋势及对森林NDVI值的影响。研究表明:197个兴趣区主要分布在贵州省西北部的赤水—习水、东北部的梵净山和东南部的非喀斯特区域;区内春、夏季NDVI变化趋势与年NDVI值变化趋势一致,下降速率达到-0.01·yr-1,冬季与其他季节变化趋势相反,呈不显著升高趋势;区内春季和夏季气温升高显著,降水和日照时间无明显变化,整体气候变化呈暖干趋势;夏季温度升高是NDVI降低的主要驱动因素。   相似文献   

3.
西辽河平原位于我国北方农牧交错带,属半干旱气候,发育科尔沁沙地,生态环境极其脆弱,开展植被指数时空变化及其影响因素研究,对于预测土地退化风险意义重大,可为该流域生态环境保护治理及水资源合理开发利用提供技术支撑。利用2000—2019年MODIS NDVI数据,采用一元线性回归趋势法和Mann-Kendall检验分析了近20年来该地区的植被生长变化趋势及突变情况。从影响植被生长的水热条件出发,分析了NDVI值与气象因素(降水、气温)、土壤湿度、地下水埋深等因子的相关关系;结合人类活动,分析了土地利用类型变化对NDVI值的影响。结果表明:(1)2000—2019年生长季NDVI值整体呈上升趋势,不存在显著突变点,最高值0.56,最低值0.41。(2)NDVI值在空间上呈现“东高西低”的分布特征,不同用地类型的NDVI值由大到小依次为耕地>林地>沼泽地>滩地>草地>盐碱地>沙地。(3)92.5%的区域植被呈增长趋势,7.5%的区域植被呈减少趋势。(4)NDVI值与降水、气温、土壤湿度呈正相关关系,相关系数分别为0.86,0.78,0.81,降水对植被影响最大。(5)最适宜天然植被生长的地下水埋深约为3 m,当地下水埋深大于10 m时,NDVI值会随着埋深的增加剧烈减小。(6)人类活动如土地开垦、植树造林是近20年来NDVI值呈增加趋势的主要原因之一,在一定程度上改善了当地生态环境。  相似文献   

4.
承德是京津冀地区重要的水源涵养区和防风固沙区,是京津冀生态环境支撑区的重要组成部分,其植被状况将直接影响着区域生态环境质量的改善。基于MOD13Q1时间序列NDVI资料,利用线性回归分析法、像元二分法、稳定性分析法等测度承德市全域2000—2018年植被覆盖时空演变特征,并分析气候、地形等因素对植被覆盖的影响。结果表明:(1)承德市全域植被状况年际变化总体发生了改善,植被生长季夏季的NDVI值最高,月度变化中7月份NDVI值最大,多年均值达到0.775 2。(2)植被年际变化趋势显著性存在空间差异,植被指数极显著增加区域面积最大,占比59.08%,而极显著减少和显著减少的区域面积较小,分别占全域的0.76%和0.58%,主要分布在承德市中部、南部等地区。(3)承德市各区县植被覆盖状况均以较高覆盖度为主,面积达到45 585.69 km2。在多年植被覆盖度稳定性格局中,西北部波动较大,其余大部分地区稳定性好,波动较低。(4)承德市NDVI受5—7月份降水量和月均温的影响较大,植被的长势可能受到了前期气象条件的滞后效应影响。地形特征对承德全域植被覆盖状况也有一定的影响,总体来看承德市地势低平地区的NDVI值相对较低。研究结果可为承德市加强重要区域生态保护、优化国土空间开发格局和科学制定生态修复措施提供参考。  相似文献   

5.
格尔木河流域植被指数时空分布及其影响因素研究   总被引:2,自引:0,他引:2  
格尔木河流域气候干旱少雨,生态环境较脆弱,植被动态对其生态环境保护具有重要意义。基于连续序列的MODIS NDVI数据,分析了格尔木河流域植被指数时空分布及其影响因素。结果表明:研究区NDVI平均值总体较小,主要在0.10~0.12间波动,但呈增大趋势。区内植被改善区分布在格尔木市东、西两侧,基本不变区为荒漠地区,植被退化区分布在北部盐湖区。区内裸土的面积逐渐减小,低覆盖率和高覆盖率植被的面积逐渐增加。研究区植被生长与气象、土壤水分和地下水位埋深都有关系。气温与植被指数相关关系较好,相关系数为0.822,而降水对植被的生长也有一定的作用。植被指数与表观热惯量是正相关关系,相关系数为0.979。区内植被的地下水位埋深范围为0~12 m,在水位埋深约为6.5 m的地方,植被长势最好。  相似文献   

6.
The present research evaluated the relation between the normalized difference vegetation index (NDVI) changes and the climate change during 2000–2014 in Qazvin Plain, Iran. Daily precipitation and mean temperature values during 2015–2040 and 2040–2065 were predicted using the statistical downscaling model (SDSM), and these values were compared with the values of the base period (2000–2014). The MODIS images (MOD13A2) were used for NDVI monitoring. In order to investigate the effects of climate changes on vegetation, the relationship between the NDVI and climatic parameters was assessed in monthly, seasonal, and annual time periods. According to the obtained results under the B2 scenario, the mean annual precipitation at Qazvin Station during 2015–2040 and 2040–2065 was 6.7 mm (9.3%) and 8.2 mm (11.36%) lower than the values in the base period, respectively. Moreover, the mean annual temperature in the mentioned periods was 0.7 and 0.92 °C higher than that in the base period, respectively. Analysis of the correlations between the NDVI and climatic parameters in different periods showed that there is a significant correlation between the seasonal temperature and NDVI (P < 0.01). Moreover, the NDVI will increase 0.009 and 0.011 during 2015–2040 and 2040–2065, respectively.  相似文献   

7.
We investigated drought activity and the relationship between drought and vegetation in Northwest China over the period 1982–2013 using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI). The indexes were, respectively, calculated from ground-based meteorological data and from remotely sensed satellite data. The spatial and temporal distributions of drought (SPEI) and of vegetation cover (NDVI) were compared using annual trends, and the relationships between these trends were analyzed. The results are: (1) Overall, Northwest China had a drought trend during the study period, although some a few regions show a significant wetness trend; (2) the mean annual NDVI fluctuates, but overall shows an increasing trend, particularly in some mountainous areas that have at least adequate water and vegetation cover, while unused land becomes degraded; (3) most regions show a positive correlation between SPEI and NDVI, although the western parts of the Tarim basin, Qaidam basin, and some regions in the southeastern part of study area show a negative correlation; and (4) the various regions respond differently to global climate change, but in general regions with more vegetation cover show increased vegetation growth, while regions with less vegetation cover are becoming degraded and thus more vulnerable to the adverse effects of climate change.  相似文献   

8.
This study characterized and compared changes in vegetation condition in areas with different gradients during the past three decades across the entire Loess Plateau. For this purpose, changes in vegetation type and vegetation coverage at sites with 0 – 15° and >15° slope gradients were determined by analyzing land use data and Normalized Difference Vegetation Index (NDVI) data, respectively. The software Arc/Info 9.3, land use transformation matrix, linear regression analysis, and Mann–Kendall test were used for the data processing and analysis. Policy influences, human impacts, and climate variability were also taken into account to find the reasons for vegetation condition change. The results indicated that the “Grain-For-Green” project achieved initial success. Areas of farmland and grassland changed most extensively, and far greater areas of farmland were transformed into forest and grassland than vice versa. Moreover, the conversion of farmland to forest and grassland mainly occurred in areas where slopes exceeded 15°, while grassland was mainly changed to farmland in areas with gentle slopes. Vegetation coverage on the Loess Plateau exhibited overall increases after the implementation of “Grain-For-Green” project. Regions with sparse vegetation have declined sharply, mostly in steeply sloped areas. Vegetation coverage has increased significantly in most regions, particularly in the parts traversed by the principal sediment source of the Yellow River, which could help to control the severe soil and water losses. However, regions with sparse vegetation on the Loess Plateau still covered 71.1 % of the total area in 2010. Therefore, it is important to further increase vegetation coverage in the future.  相似文献   

9.
Drought frequency, duration, and severity and its impact on pasture productivity in the four main vegetation zones of Mongolia were analyzed using meteorological, soil moisture, and vegetation data during the growing season (April–August) of 1965–2010. Meteorological and pasture drought characteristics were explored using the Standardized Precipitation Index (SPI), the soil moisture anomalies percentile index (W p), and Palmer Drought Severity Index (PDSI) on 1-month timescale. Generally, 35–37 (15–16 %) by SPI for meteorological drought while 27–29 (12–13 %) by W p, and 16–21 (7–9 %) by PDSI for pasture drought with different durations were identified over the four vegetation zones during the study period. Most of these droughts (80 % by SPI and 50–60 % by both W p and PDSI) observed during the entire events occurred on a 1-month duration with moderate intensity. Drought frequencies were not significantly (p > 0.05) different within the four zones. The frequency of the short-term meteorological droughts was observed relatively greater than pasture droughts; however, pasture droughts were more persistent and severe than meteorological droughts. The three indices show that the frequency and severity of droughts have slightly increased over the 46 years with significant (p < 0.05) dry conditions during the last decade of 2001–2010 in the four zones (except in the high mountain). The results showed the W p was more highly significantly correlated with the precipitation anomalies (r = 0.68) and pasture production (r = 0.55) than PDSI (r = 0.51, p < 0.05 and r = 0.38, p < 0.10, respectively). A statistical model, based on pasture production and the W p, suggested that the consecutive drought months contribution during the growing season was 30 % (p < 0.05) and that pasture production was more sensitive to the occurrence of droughts during June–August (R 2 = 0.32, p < 0.05) as seen in 2000–2002 and 2007. We concluded that a greater severity and frequency of growing-season droughts, during the last decade of 2001–2010, have driven a reduction in pasture production in Mongolia.  相似文献   

10.
Spatial and temporal variations in alpine vegetation cover have been analyzed between 1982 and 2001 in the source regions of the Yangtze and Yellow Rivers on the Tibetan Plateau. The analysis was done using a calibrated-NDVI (Normalized Difference Vegetative Index) temporal series from NOAA-AVHRR images. The spatial and temporal resolutions of images are 8 km and 10 days, respectively. In general, there was no significant trend in alpine vegetation over this time period, although it continued to degrade severely in certain local areas around Zhaling and Eling Lakes, in areas north of these lakes, along the northern foot of Bayankala Mountain in the headwaters of the Yellow River, in small areas in the Geladandong region, in a few places between TuoTuohe and WuDaoliang, and in the QuMalai and Zhiduo belts in the headwaters of the Yangtze River. Degradation behaves as vegetation coverage reduced, soil was uncovered in local areas, and over-ground biomass decreased in grassland. The extent of degradation ranges from 0 to 20%. Areas of 3×3 pixels centered on Wudaoliang, TuoTuohe, QuMalai, MaDuo, and DaRi meteorological stations were selected for statistical analysis. The authors obtained simple correlations between air temperature, precipitation, ground temperature and NDVI in these areas and constructed multivariate statistical models, including and excluding the effect of ground temperature. The results show that vegetation cover is sensitive to variations in temperature, and especially in the ground temperature at depths of ∼40 cm. Permafrost is distributed widely in the study area. The resulting freezing and thawing are related to ground temperature change, and also affect the soil moisture content. Thus, degradation of permafrost directly influences alpine vegetation growth in the study area.  相似文献   

11.
Iraq, the land of two rivers, has a history that extends back millennia and is the subject of much archaeological research. However, little environmental research has been carried out, and as such relatively little is known about the interaction between Iraq’s vegetation and climate. This research serves to fill this knowledge gap by investigating the relationship between the Normalized Difference Vegetation Index (NDVI) and two climatic factors (precipitation and air temperature) over the last decade. The precipitation and air temperature datasets are from the Water and Global Change Forcing Data ERA-Interim (WFDEI), and the NDVI dataset was extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m spatial resolution and 16 day temporal resolution. Three different climatic regions in Iraq, Sulaymaniyah, Wasit, and Basrah, were selected for the period of 2001–2015. This is the first study to compare these regions in Iraq, and one of only a few investigating vegetation’s relationship with multiple climatic factors, including precipitation and air temperature, particularly in a semi-arid region. The interannual, intra-annual and seasonal variability for each region is analysed to compare the different responses of vegetation growth to climatic factors. Correlations between NDVI and climatic factors are also included. Plotting annual cycles of NDVI and precipitation reveals a coherent onset, fluctuation (peak and decline), with a time lag of 4 months for Sulaymaniyah and Wasit (while for the Basrah region, high temperatures and a short rainy season was observed). The correlation coefficients between NDVI and precipitation are relatively high, especially in Sulaymaniyah, and the largest positive correlation was (0.8635) with a time lag of 4 months. The phenological transition points range between 3 and 4 month time lag; this corresponds to the duration of maturity of the vegetation. However, when correlated with air temperature, NDVI experiences an inverse relationship, although not as strong as that of NDVI and precipitation; the highest negative correlation was observed in Wasit with a time lag of 2 months (? 0.7562). The results showed that there is a similarity between temporal patterns of NDVI and precipitation. This similarity is stronger than that of NDVI and air temperature, so it can be concluded that NDVI is a sensitive indicator of the inter-annual variability of precipitation and that precipitation constitutes the primary factor in germination while the air temperature acts with a lesser effect.  相似文献   

12.
A daily surface soil moisture model described and tested previously with data from the Phoenix, AR (USA) area, has been applied now to climate data collected in semi-arid Botswana over a multi-year period. The physically based model was calibrated with observed surface moisture data from one growing season and validated with data from another. Good overall agreement (r2 = .89) was found between the observed and modelled data. The seasonal variability of precipitation in this region is reflected in the simulated daily surface moisture. The response of the natural savanna vegetation as observed from monthly composites of satellite-derived Normalized Difference Vegetation Index (NDVI) is also monitored for the same period. It is seen that the NDVI peaks at different times during the rainy season from one year to the next, according not only to the total seasonal precipitation, but its temporal distribution as well. It is also seen that there is a delay in intraseasonal vegetation response. While the NDVI is poorly correlated with the current month's average soil moisture, a distinct relationship with the previous month's average soil moisture was found.  相似文献   

13.
The objective of the present study was to reconstruct a short-term (12–14 years) trend of surface temperature and precipitation patterns using their surrogates as provided by satellite images for selected locations along the Red Sea mountains in Saudi Arabia. Time series land surface temperature (LST) and normalized difference vegetation index (NDVI) data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite were temporally plotted to delineate the trend and the decadal rates of change of both parameters. Results showed that real climate change is reported in the study area during the study period. There is a net increasing in the surface temperatures by 0.45 to 1.2 °C/decade and a net decrease in annual rainfall between 2001 and 2014. Findings of the present study show that the region is under a warming of the climate and a declining of wetness, which coincide with the air temperature and rainfall trends obtained from meteorological stations.  相似文献   

14.
为了分析荒漠化防治中荒漠植物生长与降水、土壤水和地下水的关系,在河西走廊荒漠区建立了荒漠化综合防治试验站进行长期定位监测,取得了降水、土壤水、地下水、植物盖度、生物量等数据,采用特征参数算法、相关和逐步多元回归方法,对植物生长和水分的年内、年际变化特征及相关回归模型进行了分析.结果表明:2006-2014年际变化上,土壤水变化最剧烈,降水、生物量、盖度变化剧烈程度极接近,且也较大,地下水位变化最缓和.盖度呈波动性增大趋势较明显,生物量略有增加趋势,降水、土壤水、地下水位变化呈波动性略有降低趋势,但不明显.在植物生长季的3-11月份期间,土壤各层含水率变化步调基本一致,生物量和盖度变化步调基本一致,降水量、地下水埋深变化步调基本一致,年内变化幅度从大到小依次为降水量 > 地下水埋深 > 生物量 > 平均盖度 > 土壤质量含水率.盖度、生物量模型均通过了R拟合检验、F方差检验、t回归系数检验,通过模型可预测变差的58.0%、98.7%,准确率可达52.0%、86.2%.研究成果可为荒漠化防治中的水资源管理以及退耕还林、天然林保护、黑河流域综合治理等工程对水资源影响评估等提供科技支撑和参考数据.  相似文献   

15.
乔冈  徐友宁  陈华清  焦梦奇  陈述  高云峰 《地质通报》2018,37(12):2176-2183
地裂缝地质灾害是植被生态地质环境破坏的一种重要的方式,查明地裂缝对植被生态环境影响的方式、程度、范围等对于宁东煤矿区植被生态环境保护具有重要意义。土壤水分是评价地裂缝是否影响植被生态的重要指标,地裂缝的存在加剧了植被赖以生存的土壤水分的散失,因此,选取典型植被区、土壤岩性结构区的煤矿采空区开展原位试验,分别动态监测裂缝边缘、远离裂缝区包气带剖面不同埋深的土壤水分,结合气象要素分析,以达到研究地裂缝对植被生态环境影响的目的。结果表明:(1)土壤水分散失空间上水分优先自裂缝裸露面散失,其次才会自地表散失;(2)土壤水分散失时间呈动态变化,同气温呈正相关关系,其中,7月最大,呈现2个蒸发面,8月次之,呈现1个蒸发面;(3)受土壤岩性的影响,随着土壤埋深增加,土壤含水率呈"S"形变化特征,不同岩性持水性大小顺序是:风积沙黄土根植土粉土;该结论对于宁东煤矿区植被生态地质环境保护具有重要指导意义。  相似文献   

16.
基于Google Earth Engine遥感云平台收集1987—2016年Landsat系列遥感卫星影像,采用像元二分模型对承德市围场满族蒙古族自治县植被覆盖度进行估算,结合气象数据和地形信息,分析近30年来研究区植被覆盖动态变化规律。结果表明:围场县1987—2016年的归一化植被指数(NDVI)值总体上呈上升趋势,全县NDVI平均值从0.63提高到了0.78,植被覆盖状况不断改善。研究区植被改善情况中,1987—2016年NDVI大于0.15的面积比例占到全县植被面积的49.28%,占比最大。1987—2016年NDVI小于等于-0.15的植被面积比例仅为0.82%。1987—2016年,各级植被覆盖度的转移矩阵体现出2016年的植被状况明显好于1987年,极高覆盖度植被转入面积高达7 991.84 km2。1987—2016年植被覆盖景观破碎程度不断降低,平均斑块面积指数从13.147 8扩大到31.703 4,植被覆盖类型趋于集中分布,连通性好。研究区总体气候变化趋势对植被生长具有不利影响,不同坡度和坡向的植被覆盖状况不同,人类活动和社会经济因素的影响为研究区植被改善情况发挥着重要作用。  相似文献   

17.
Runoff, which is a key component in the hydrological cycle, is mainly controlled by climate factors and land-surface elements in non-humid regions. The impacts of climate and vegetation changes on runoff based on Budyko hypothesis in the middle and upper reaches of the Pearl River Basin was analyzed in this article. First, the temporal trend of variables in the study area during 1981-2013 was examined by using the Mann-Kendall trend test with trend-free pre-whitening. Second, the relationship of the parameter n in Fu's equation with factors of climate and vegetation coverage was built to reveal the time-variation process of n. Finally, the effects of climatic factors and vegetation coverage on runoff were assessed by analyzing the sensitivity of runoff to each variable. It is found that average temperature (T), maximum temperature (Tmax) and minimum temperature (Tmin) in the study area present an increasing trend while runoff (Q), precipitation (P), wind speed (u2) and relative humid (RH) present decreasing trend. The parameter n in Fu's equation is significantly related to both climatic factors (including precipitation (P), average temperature (T), relative humid (RH), sunshine duration (S), wind speed (u2)) and vegetation coverage index (NDVI). In terms of sensitivity of Runoff (Q) to the variation of each climatic factors and NDVI in the middle and upper reaches of the Pearl River Basin, precipitation (P) and NDVI have the highest sensitivity, followed by other climatic factors. Additionally, the precipitation (P) reduction is the main driving factor to the decline in runoff, while vegetation coverage is another important factor. In general, climate change affects runoff not only by changing the hydrological inputs (precipitation (P) and potential evaporation (PET) but also by altering the watershed characteristics as represented by the parameter n, while the impacts of vegetation coverage on runoff are exerted mainly through the alteration of the watershed characteristics.  相似文献   

18.
Typhoons are one of the major natural hazards occurring frequently in Shanghai. The comprehensive assessment of drought relief by typhoon has become a major concern of scientists and government agencies in Shanghai, China. In this article, with the support of remote sensing data and the available data from local meteorological stations, the regional drought relief was investigated and the change of drought intensity was quantified by the typhoon “Saomai” between 5 and 8 August 2005. The precipitation anomaly calculated on the basis of recorded rainfall was adopted to analyze drought condition changes before and after the typhoon. Then, vegetation supply water index (VSWI) and normalized difference vegetation index (NDVI) were used to monitor the drought relief due to the consecutive shortage of summer rainfall. Impact of typhoon on drought was compared by VSWI before and after typhoon Saomei. The results showed that the typhoon alleviated the drought of the vegetation by more than 70 %, based on the spatial and temporal distribution of precipitation, the ground temperature, relative humidity, high temperature, NDVI from Shanghai area. The result shows that MODIS remote sensing data are a useful quantitative monitoring tool in drought relief by local typhoons. More strategies are necessary to be adopted for prevention and mitigation of meteorological disaster in Shanghai in recent years.  相似文献   

19.
基于遥感技术的贵州春季土壤水分空间分异研究   总被引:1,自引:0,他引:1  
田雷  杨胜天  王玉娟 《中国岩溶》2007,26(2):111-118
通过对已建立的土壤水分运动模拟模型的校正,使之适合于喀斯特环境的土壤水分运移,并以遥感和GIS技术为依托,反演出贵州省大尺度下的各陆表参数(如: 地表温度、NDVI、气温、日照时数等) ,进而模拟出贵州省土壤水分运动转化过程,定量描述了喀斯特地区土壤水分变化,并对影响土壤水分变化的相关因子进行相关性分析。结果表明: 贵州春季土壤水分含量均值为0. 23mm /mm,次降雨通过蒸散发和下渗等作用在10天左右的时间之后,土壤水分含量及其增长率接近稳定状态,平均土壤水分变化率为1. 16% ;降水量对土壤水分变化的影响程度较其它的气象因子大,与土壤水分的净相关系数较大,是土壤水分变化的最主要的净影响因子;春季贵州省土壤水分空间分布总体上呈现东南、南部较高,而中部,北部、西部地区较低的分布特征,主要原因之一是中北部地区主要以黄壤或水稻土为主,土壤孔隙较大,漏水较为严重,土壤保水性不强。   相似文献   

20.
The Hanjiang River Basin is the source area of the Middle Route Project of the South-to-North Water Diversion Project, and the vegetation coverage in this basin directly affects the quality of the ecological environment. This study is based on long time series of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data synthesized over 16 days from 2000 to 2016 in the Hanjiang River Basin. Major climatic data (temperature and rainfall) and topographic data (elevation, slope, and aspect) are employed to analyze the driving forces of NDVI changes. The results demonstrate the following: for the 2000–2016 period, the average annual NDVI is 0.823, with a change trend of 0.025 year?1. The overall NDVI upstream is higher than that downstream. The average annual value of NDVI upstream is 0.844, with a change trend of 0.036 year?1, and that of downstream is 0.799, with a change trend of 0.022 year?1. The spatial distribution of NDVI was significantly increased in the area around the upstream section of the river and near the Danjiangkou Reservoir, and the distribution of NDVI around the central city was significantly reduced. The NDVI was positively correlated with temperature and rainfall, and the impacts differed among different regions. At elevations below 2000 m, the NDVI shows an increasing trend with increasing elevation, and at elevations exceeding 2000 m, the NDVI is negatively correlated with elevation. Slope is positively correlated with the NDVI. The influence of aspect on the NDVI was small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号