首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matteo Tosi   《Geomorphology》2007,87(4):268-283
The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25–40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick. S. junceum (L.) colonizes not only fan/cone/taluses but also headwalls and cliffs and, for a 0.6 m thick soil, it stabilises these areas up to 45°. The effectiveness of this reinforcement, however, depends strongly on the frequency of soil and seasonal grass vegetation removal due to shallow landsliding before the entrance of the shrub species.  相似文献   

2.
Slope failures cause billions of dollars of damage annually and put human lives at risk. This study employed field measurements and observations to provide the framework for laboratory simulations to investigate the effects of environmental characteristics on slope stability in the highly fractured bedrock region of the Boston Mountains, northwest Arkansas. Field measurements, to determine characteristics and possible controls of 10 shallow slope failures along an interstate highway, revealed that slope failures occurred within a relatively narrow range of slope angles (17–36°) and in loamy soils. Based on field observations, flume experiments were conducted to investigate the relationships between soil texture, slope angle, bedrock fractures, soil compaction, and slope instability. Time to failure differed (p < 0.05) among treatment combinations. Generally, slopes composed of loam were more stable than slopes composed of sand. Time to failure decreased more on slopes of 15–20° than on slopes of 20–25°. Flume slopes with sod cover never failed. This study provided a methodology for using field analyses of slope failures to guide laboratory experiments and demonstrated that complex interactions among environmental factors work to stabilize or compromise steep (>20°) slopes.  相似文献   

3.
On upland Triassic sandstone slopes of the western Blue Mountains, nonswamp, sclerophyllous heath (shrub-dominated vegetation) on shallow soils is commonly found downslope and adjacent to sclerophyllous forest on deeper soils. Some consider heath—and thus shallow soils—as favouring west-facing slopes, which are expected to experience drier microclimates due to insolation, strong and desiccating winds, and severe summer fires. However, our analysis of extensive areas with heath on shallow soils, based on vegetation and topographic maps, and fieldwork of uplands with various degrees of dissection, suggests that aspect is a poor predictor of shallow soils. Rather, shallow soils and heath are found on short slopes and the lower segments of longer slopes with the latter significantly steeper than forested segments.The shallow–deep soil boundary, marked by contrasting modern vegetation structures, does not signify a catchment area threshold, and correspondingly, the vegetation patterns are not in balance with distributary catchment processes, as short slopes are mantled exclusively by shallow soils. Instead, the soil depth boundary represents the propagation of base-level lowering signals, which takes place not only by the headward retreat of knickpoints but also via increased lowering of slope segments adjacent to drainage lines. This leads to steep slopes immediately adjacent to canyons, narrow gorges, and small steep valleys, that are mantled by shallow, discontinuous soils undergoing rapid erosion. These steep slopes persist in the landscape for ≥ 10 My after upland stream rejuvenation until incision of more weatherable Permian sediments, underlying the Triassic cliff-forming sandstones, triggers rapid lateral expansion of gorges. Once shallowly mantled and steeper slopes adjacent to streams are consumed by gorge widening, slopes adjacent to wide gorge clifflines reflect former upland drainage patterns rather than the redirected flow to rapidly widening gorges. Hence, modern vegetation patterns reflect a significant phase of landform development, perhaps combined with enhanced erosion during the Last Glacial Period that is compounded by a humped soil production function on bedrock.  相似文献   

4.
Spatial patterns of soil surface components (vegetation, rock fragments, crusts, bedrock outcrops, etc.) are a key factor determining hydrological functioning of hillslopes. A methodological approach to analyse the patterns of soil surface components at a detailed scale is proposed in this paper. The methods proposed are applied to two contrasting semi-arid Mediterranean hillslopes, and the influence of soil surface component patterns on the runoff response of the slopes was analysed. A soil surface components map was derived from a high resolution photo-mosaic obtained in the field by means of a digital camera. Rainfall simulation experimental data were used to characterise the hydrological behaviour of areas with a specific pattern of soil surface components by means of the parameters of the Horton equation. Plot runoff data were extrapolated at the hillslope scale based on the soil surface component maps and their hydrological characterisation. The results show that in both slopes runoff generation is concentrated up- and downslope, with a water accepting area in the centre of both slopes disrupting the hydrological connectivity at the slope scale. This reinfiltration patch at the centre of the slope is related to the type of soil surface component and its spatial pattern. Herbaceous vegetation and ‘on top rock fragments’ increase the infiltration capacity of soils at the centre of the slope. In contrast, embedded rock fragments, rock outcrops, as well as crusted surfaces located in the upper and lower slopes favour runoff generation in these areas. In addition, a general pattern of water contribution areas downslope is apparent on both slopes. The south-facing slope shows a higher hydrological connectivity and more runoff. 55% of the surface of the south-facing slope produces runoff at the end of a 1 hour rainfall event and 17.3% of the surface is covered by a runoff depth between 0.5 and 1 mm. While on the north-facing slope only 38% of the surface produces runoff under the same conditions. Longitudinal connectivity of runoff is higher at the south-facing slope where more runoff-generating surfaces appear and where the vegetation pattern favours the connectivity of bare areas.  相似文献   

5.
Patterns of rock fragment cover generated by tillage erosion   总被引:6,自引:0,他引:6  
Intensively cultivated areas in the upper part of the Guadalentin catchment (southeast Spain) show a systematic spatial pattern of surface rock fragment cover (Rc). The objective of this paper is to quantify and to explain this spatial rock fragment cover pattern. Therefore, a map of an intensively cultivated area of 5 km2 was digitised, and for each pixel total topographic curvature was calculated. Next, rock fragment cover was determined photographically at 35 sites with a range of total slope curvatures. A linear relation between total curvature and rock fragment cover was found, except for narrow concavities. It was hypothesised that this pattern can be explained by a significant net downslope movement of rock fragments and fine earth by tillage. The displacement distances of rock fragments by tillage with a duckfoot chisel were measured by monitoring the displacement of tracers (painted rock fragments and aluminium cubes) on 5 sites having different slopes. The rare of tillage erosion for one tillage pass with a duckfoot chisel, expressed by the diffusion constant (k), equals 282 kg/m for up and downslope tillage and only 139 kg/m for contour tillage. Nomograms indicate that mean denudation rates in almond groves due to tillage erosion (3 to 5 tillage passes per year) can easily amount to 1.5–2.6 mm/year for contour tillage and up to 3.6–5.9 mm/year for up- and downslope tillage for a field, 50 m long and having a slope of 20%. These figures are at least one order of magnitude larger than reported denudation rates caused by water erosion in similar environments. Hence tillage erosion contributes significantly to land degradation. The downslope soil flux induced by tillage not only causes considerable denudation on topographic convexities (hill tops and spurs) and upper field boundaries but also an important sediment accumulation in topographic concavities (hollows and valley bottoms) and at lower field boundaries. Kinetic sieving (i.e. the upward migration of rock fragments) by the tines of the duckfoot chisel also concentrates the largest rock fragments in the topsoil in such a way that a rock fragment mulch develops in narrow valleys and at the foot of the slopes. These results clearly indicate that tillage erosion is the main process responsible for the observed rock fragment cover pattern in the study area. Since the study area is representative for many parts of southern Spain where almond groves have expanded since 1970, the results have a wider application. They show to what extent intensive tillage of steep slopes has contributed to the increase in soil degradation, to changes in hillslope morphology (i.e. strong denudation of convexities, development of lynchets and rapid infilling of narrow valley bottoms) and to the development of rock fragment cover patterns which control the spatial variability of the hydrological and water erosion response within such landscapes.  相似文献   

6.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

7.
It is usually recognized that relatively large amounts of soil particles cannot be transported by raindrop splashes under windless rain. However, the splash-saltation process can cause net transportation in the prevailing wind direction since variations in splash-saltation trajectory due to the wind are expected in wind-driven rain. Therefore, determining the combined effect of rain and wind on the process should enable improvement of the estimation of erosion for any given prediction technique. This paper presents experimental data on the effects of slope aspect, slope gradient, and horizontal wind velocity on the splash-saltation trajectories of soil particles under wind-driven rain. In a wind tunnel facility equipped with a rainfall simulator, the rains driven by horizontal wind velocities of 6, 10, and 14 m s−1 were allowed to impact three agricultural soils packed into 20×55 cm soil pans placed at both windward and leeward slopes of 7%, 15%, and 20%. Splash-saltation trajectories were measured by trapping the splashed particles at distances downwind on a 7-m uniform slope segment in the upslope and downslope directions, respectively, for windward and leeward slopes. Exponential decay curves were fitted for the mass distribution of splash-saltation sediment as a function of travel distance, and the average splash-saltation trajectory was derived from the average value of the fitted functions. The results demonstrated that the average trajectory of a raindrop-induced and wind-driven soil particle was substantially affected by the wind shear velocity, and it had the greatest correlation (r=0.96 for all data) with the shear velocity; however, neither slope aspect nor slope gradient significantly predicted the splash-saltation trajectory. More significantly, a statistical analysis conducted with nonlinear regression model of C1(u*2/g) showed that average trajectory of splash saltation was approximately three times greater than that of typical saltating sand grain.  相似文献   

8.
阴山中段山地土地利用类型转换格局分析   总被引:3,自引:0,他引:3  
利用1990年TM数据和2000年ETM数据,以农牧交错带的阴山山地中段为研究区,分析1990~2000年土地利用类型的空间分异规律,重点探讨各土地利用类型中耕地、林地和草地的变化过程。研究表明,耕地的转移流向主要集中于草地,而草地的转移流向又集中于耕地,林地消失区主要转变为草地。阴山北麓为草地向耕地转变的集中区域;阴山南部是林地向草地转变最为集中的区域;阴山中部土地利用类型相互转化相对较少。在土地利用的垂向变化上,耕地减少区域集中分布于海拔1500~1600m及1700~1850m;而其他土地利用类型向耕地转变的集中分布区域大致在海拔1700~1900m范围;海拔1600-1800m为草地-耕地相互转移变化最为集中的区域;草地面积主要在海拔1450-1600m范围增加,在1650-1800m范围内减少;林地除在海拔2000~2200m范围内与非林地相互转变大致持平外,在其余地区均发生退化。海拔1800m和海拔2100左右是本农牧交错带山地土地利用类型波动最为集中的两个分布区。  相似文献   

9.
Flared slopes are smooth concavities caused by subsurface moisture-generated weathering in the scarp-foot zone of hillslopes or boulders. They are well represented in granitic terrains but also developed in other massive materials such as limestone, sandstone, dacite, rhyolite, and basalt, as well as other plutonic rocks. Notches, cliff-foot caves, and swamp slots are congeners of flared slopes. Though a few bedrock flares are conceivably caused by nivation or by a combination of coastal processes, most are two-stage or etch forms. Appreciation of the origin of these forms has permitted their use in the identification and measurement of recent soil erosion and an explanation of natural bridges. Their mode of development is also germane to the origin of the host inselberg or bornhardt and, indeed, to general theories of landscape evolution. But certain discrepancies have been noted concerning the distribution and detailed morphology of flared slopes. Such anomalies are a result of structural factors (sensu lato), of variations in size of catchment and in degree of exposure, and of several protective factors. Notwithstanding, the original explanation of flared slopes stands, as do their wider implications. [Key words: flared slope, inselberg, soil erosion, weathering, fractures.]  相似文献   

10.
The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic–geologic–anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.  相似文献   

11.
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on seg-ments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and inten-sive precipitation, rill can be formed starting even at 15 m from the top of the slope.  相似文献   

12.
东北黑土漫岗区长坡面坡耕地侵蚀产沙沿程变化   总被引:7,自引:0,他引:7  
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on seg-ments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm,Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation,rill cannot happen within the top 50 m,while in a year with large and inten-sive precipitation,rill can be formed starting even at 15 m from the top of the slope.  相似文献   

13.
Due to growing consumption of nickel (Ni) in a range of industries, the demand for Ni has increased rapidly around the world. This trend requires a more precise estimation of available Ni grade deposits and an identification of factors controlling the grade distribution. To achieve these requirements, this study applies geostatistical techniques to spatial modeling of the Ni grade in a laterite Ni deposit, with reference to geomorphic features such as slope gradient and the thickness of limonite and saprolite zones. The Sorowako area in Sulawesi Island, Indonesia, was chosen as a case study area because it has a representative laterite Ni deposit with large reserves. Chemical content data from drillhole cores at 294 points were used for the analysis. The slope gradient was found to have a remarkable correlation with the thickness of the limonite zone, but there was no correlation between the thickness of the limonite and the saprolite zones above the bedrock. One important feature was a general correlation between the thickness of the saprolite zone and the maximum Ni grade in this zone: the grade increases with the thickness of the zone. Co-kriging was adopted to incorporate this correlation into estimating the maximum Ni grade in the saprolite zone. As a result, the maximum Ni grade in the saprolite zone tends to be high mainly in areas of slight slope. The Ni accumulation at this topographic feature probably originates from deep weathering by groundwater infiltrating through well-developed rock fractures.  相似文献   

14.
Most slope-channel outcrop studies have been conducted at continental margin-scale on seismic data. However, in foreland and back-arc deepwater settings, sub-seismic scale slope channels hold equally important information on deepwater sediment delivery, often in hydrocarbon-bearing provinces. One such slope-channel system is examined in Lower Jurassic prograding shelf-margin clinoforms in Bey Malec Estancia, La Jardinera area, southern Neuquén Basin, Argentina. In a 4 km wide, 300 m tall, slightly oblique- to depositional-dip section of Jurassic Los Molles Formation deepwater slope deposits, seven clinoform timelines were identified by isolated slope-channel fills with thicknesses less than 50 m. Sedimentary logs, satellite images, a digital elevation model and drone photogrammetry were used to map variations in downslope channel geometry and infill facies. The slope channels are filled with sediment density flow deposits: poorly sorted conglomeratic debrites, structureless sandy high-density turbidites and well-sorted, fine-grained, graded low-density turbidites. The debrite portion decreases downslope, whereas high- and low-density turbidites increase. A grain-size analysis reveals a broad downslope fining trend of turbidite and debrite beds within slope channels with increasing water depth, and some notable bypass of conglomeratic facies to the lowermost slope channels and basin floor fans. The architecture of the slope channels changes from lateral to aggradational infill downstream. The Bey Malec clinoforms and its slope channels add new knowledge on downslope changes for sediment delivery in relatively shallow (<500 m water depth), prograding-dominant deepwater basins. They also highlight one of very few outcropping examples of oblique-type clinoforms.  相似文献   

15.
The densities of pits made by goannasVaranus gouldiiwere estimated in the three distinct zones of banded mulga landscapes (erosion slope, interception zone, and mulga grove) in paddocks of a grazing study in north-western New South Wales, Australia. In light and moderately grazed paddocks, soil pits were significantly more abundant in the interception zones (M=119.057 m−2) than in the groves and erosion slopes (M=16.057 m−2). In the overgrazed paddock there were no differences in densities of pits in any of the zones. In the groves and erosion slopes approximately 70-80% of the pits contained litter, seeds, and fruits. However, on the erosion slopes less than 20% of the pits contained litter and seeds. The data support the hypothesis that soil disturbance byVaranuslizards produces a positive feedback mechanism for the viability of the interception zone and the functioning of banded vegetation landscapes.  相似文献   

16.
Relationships between tectonic framework and gravity-driven phenomena have been investigated in an area of the Central Apennines (Italy) characterised by high relief. The north–south, half-dome shaped Maiella anticline lies in the easternmost part of the Apennine fold-and-thrust belt. Its backlimb is bordered by the Caramanico Fault, a normal fault with a maximum downthrown of about 3.5 km that separates the western slope of the Maiella Massif from the Caramanico Valley. The southwestern Maiella area is affected by deep-seated gravitational slope deformation indicated by major double crest lines, down-hill and up-hill facing scarps, a pattern of crossing trenches, bulging at the base of slopes and the presence of different types of landslide and talus slope deposits.The onset and development of deep-seated gravitational slope deformations and the location of Quaternary, massive rockslope failures have been strongly influenced by the structural framework and tectonic pattern of the anticline. Deep-seated gravitational slope deformation at Mt. Macellaro–Mt. Amaro ridge has developed along the Maiella western, reverse slope in correspondence with the anticline axial culmination; it is bordered at the rear by a NNW–SSE oriented, dextral, strike-slip fault zone and has an E–W direction of rock mass deformation. Closer to the southern plunging area of the anticline, gravity-driven phenomena show instead a N–S and NW–SE direction, influenced by bedding attitude.3D topographic models illustrate the relationship between deep-seated gravitational slope deformation and massive rockslope failures. The Campo di Giove rock avalanche, a huge Quaternary failure event, was the result of an instantaneous collapse on a mountaine slope affected by a long-term gravity-driven deformation.  相似文献   

17.
荒漠人工植被区浅层土壤水分空间变化特征分析   总被引:11,自引:1,他引:10  
潘颜霞  王新平 《中国沙漠》2007,27(2):250-256
研究土壤水分的空间变异及时间动态特征有助于在水文过程与生态格局之间建立定量的联系,由于土壤水分对整个地球系统的重要性,它的时间和空间变化日益引起水文界的广泛关注。干旱荒漠区年降水量稀少,土壤水分在整个生物过程中的作用就显得尤为重要。试验于2005年4月到10月在中国科学院沙坡头沙漠试验研究站人工植被区进行,主要观测1956年植被区表层(0—15 cm)和亚表层(15—30 cm)土壤水分的空间格局与动态分布及其相关影响因素。结果表明:人工植被区表层土壤水分含量明显高于亚表层,其空间变异程度为中等,空间分布的时间差异性显著;降雨是引起干旱沙地表层土壤水分空间变异的决定因素,植物根系是引起亚表层水分空间变异的重要因素。从不同微地形来看,土壤水分含量值表现为丘间低地>背风坡>迎风坡,变异程度丘间低地小于迎风坡和背风坡;地形是决定背风坡表层和亚表层以及迎风坡亚表层土壤水分空间分布的主要因素,而迎风坡表层土壤水分变化受风力等环境因子的影响较大。  相似文献   

18.
一些边坡治理后由于工程加载、雨水入渗以及地震等影响,局部会出现新的变形破坏,需要根据边坡和治理工程结构的变形情况进行二次加固(补强加固).以拉力分散型锚索为例,首先分析其结构特征及优越性.考虑松散地层的软化特性,借助剪滞理论分析模型给出拉力分散型锚索锚固段上灌浆体与锚固岩层界面剪应力的计算公式,在此基础上,对一公路边坡二次加固中采用的拉力分散锚索锚固段荷载分布进行了分析和讨论.实例分析和监测结果表明,拉力分散型锚索锚固段荷载分布更为合理,有助于维护锚固体系的预应力水平.拉力分散型锚索用于边坡二次加固具有广泛的应用前景.  相似文献   

19.
Rates of soil creep were studied periodically over a 30-year period in southeastern Utah on Mancos Shale badland slopes averaging 35 degrees. More intensive studies were carried out over a 10-year period on slopes averaging 40 degrees. On the 35 degree slope the average rate of movement was 2.71 cm yr−1.On the 40 degree slopes, rates varied from 3.14 to 5.94 cm yr−1.
Individual rates of movement varied widely, but average movement of a given line was consistent. No statistical differences in rates of movement were found between north- and south-facing slopes.
About two-thirds of the total movement occurred during the winter/spring period; episodes of rapid movement coincided with years in which storms deposited at least 0.6 cm of precipitation per day for at least two consecutive days. Downslope rotation of nails indicates that creep involves only the top few centimeters of soil.  相似文献   

20.
Conflicting reports appear in the literature from geomorphic studies describing the colder Late Pleistocene environmental conditions of the Lesotho Highlands in southern Africa. Evidence is given for limited glaciation and/or periglacial conditions, with or without permafrost. An investigation of the distribution, morphometric attributes and surface weathering characteristics of relict openwork block accumulations in the area around Thabana‐Ntlenyana, the highest summit in the range, supports the contention for a relatively arid periglacial environment during the Last Glacial period. A phase of enhanced block production is evident from the concentration of blocks in the upper layer of colluvium. Slope mobility on south‐facing slopes is shown in the blockfield fabrics and the increase in downslope relative age of block surfaces. Block production and slope creep are attributed to depressed temperature conditions and seasonal freeze. Colluvium, within which blocks have been incorporated and superimposed, indicates that slope mantles predate the onset of the colder period and evidence militates against either deep snow cover or localised glaciation of south‐facing slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号