首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the predictions of the standard cold dark matter model is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant-density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark-matter-dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well-defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting cold dark matter as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo centre surrounded by a Navarro, Frenk & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross-section ( σ ) which has an explicit dependence with the halo dispersion velocity ( v ). If m x is the mass of the dark matter particle: σ m x ≈4×10−25 (100 km s−1  v −1) cm2 GeV−1.  相似文献   

2.
Analysing the weak lensing distortions of the images of faint background galaxies provides a means to constrain the average mass distribution of cluster galaxies and potentially to test the extent of their dark matter haloes as a function of the density of their environment. The observable image distortions are a consequence of the interplay between the effects of a global cluster mass distribution and the perturbations resulting from individual cluster galaxies. Starting from a reconstruction of the cluster mass distribution with conventional techniques, we apply a maximum likelihood method to infer the average properties of an ensemble of cluster galaxies. From simulations this approach is found to be reliable as long as the galaxies including their dark matter haloes only contribute a small fraction to the total mass of the system. If their haloes are extended, the galaxies contain a substantial mass fraction. In this case our method is still applicable in the outer regions of clusters, where the surface mass density is low, but yields biased estimates of the parameters describing the mass profiles of the cluster galaxies in the central part of the cluster. In that case it will be necessary to resort to more sophisticated strategies by modelling cluster galaxies and an underlying global mass distribution simultaneously. We conclude that galaxy–galaxy lensing in clusters provides a unique means to probe the presence and extent of dark haloes of cluster galaxies.  相似文献   

3.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

4.
An analytical model is presented for the post-collapse equilibrium structure of virialized objects that condense out of a low-density cosmological background universe, either matter-dominated or flat with a cosmological constant. This generalizes the model we derived previously for an Einstein–de Sitter (EdS) universe. The model is based upon the assumption that cosmological haloes form from the collapse and virialization of 'top-hat' density perturbations, and are spherical, isotropic and isothermal. This leads to the prediction of a unique, non-singular, truncated isothermal sphere (TIS), a particular solution of the Lane–Emden equation (suitably modified when Λ≠0) . The size and virial temperature are unique functions of the mass and redshift of formation of the object for a given background universe. The central density is roughly proportional to the critical density of the universe at the epoch of collapse. This TIS model is in good agreement with observations of the internal structure of dark-matter-dominated haloes on scales ranging from dwarf galaxies to X-ray clusters. It also reproduces many of the average properties of haloes in simulations of the cold dark matter (CDM) model to good accuracy, suggesting that it is a useful analytical approximation for haloes that form from realistic initial conditions. Our TIS model matches the density profiles of haloes in CDM N -body simulations outside the innermost region, while avoiding the steep central cusp of the latter which is in apparent conflict with observations. The TIS model may also be relevant to non-standard CDM models, such as that for self-interacting dark matter, recently proposed to resolve this conflict.  相似文献   

5.
6.
We explain in simple terms how the build-up of dark haloes by merging compact satellites, as in the cold dark matter (CDM) cosmology, inevitably leads to an inner cusp of density profile  ρ∝ r −α  with  α≳ 1  , as seen in cosmological N -body simulations. A flatter halo core with  α < 1  exerts on the satellites tidal compression in all directions, which prevents the deposit of stripped satellite material in the core region. This makes the satellite orbits decay from the radius where  α∼ 1  to the halo centre with no local tidal mass transfer, and thus causes a rapid steepening of the inner profile to  α > 1  . These tidal effects, the resultant steepening of the profile to a cusp, and the stability of this cusp to tandem mergers with compact satellites are demonstrated using N -body simulations. The transition at  α∼ 1  is then addressed using toy models in the limiting cases of impulse and adiabatic approximations and using tidal radii for satellites on radial and circular orbits. In an associated paper, we address the subsequent slow convergence from either side to an asymptotic stable cusp with  α≳ 1  . Our analysis thus implies that an inner cusp is enforced when small haloes are typically more compact than larger haloes, as in the CDM scenario, such that enough satellite material makes it intact into the inner halo and is deposited there. We conclude that a necessary condition for maintaining a flat core, as indicated by observations, is that the inner regions of the CDM satellite haloes be puffed up by about 50 per cent such that when they merge into a larger halo they would be disrupted outside the halo core. This puffing up could be due to baryonic feedback processes in small haloes, which may be stimulated by the tidal compression in the halo cores.  相似文献   

7.
We examine the properties of dark matter haloes within a rich galaxy cluster using a high-resolution simulation that captures the cosmological context of a cold dark matter universe. The mass and force resolution permit the resolution of 150 haloes with circular velocities larger than 80 km s−1 within the cluster virial radius of 2 Mpc (with Hubble constant H 0 = 50 km s−1 Mpc−1). This enables an unprecedented study of the statistical properties of a large sample of dark matter haloes evolving in a dense environment. The cumulative fraction of mass attached to these haloes varies from close to zero per cent at 200 kpc to 13 per cent at the virial radius. Even at this resolution the overmerging problem persists; haloes that pass within 100–200 kpc of the cluster centre are tidally disrupted. Additional substructure is lost at earlier epochs within the massive progenitor haloes. The median ratio of apocentric to pericentric radii is 6:1, so that the orbital distribution is close to isotropic, circular orbits are rare and radial orbits are common. The orbits of haloes are unbiased with respect to both position within the cluster and the orbits of the smooth dark matter background, and no velocity bias is detected. The tidal radii of surviving haloes are generally well-fitted using the simple analytic prediction applied to their orbital pericentres. Haloes within clusters have higher concentrations than those in the field. Within the cluster, halo density profiles can be modified by tidal forces and individual encounters with other haloes that cause significant mass loss —'galaxy harassment'. Mergers between haloes do not occur inside the cluster virial radius.  相似文献   

8.
In the current ΛCDM cosmological scenario, N -body simulations provide us with a universal mass profile, and consequently a universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the universal rotation curve of disc galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb–Im spirals, out to the edge of the galaxy haloes.  相似文献   

9.
The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry–Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution Hα 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The Hα velocities were combined with low resolution H  i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro–Frenk–White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.  相似文献   

10.
We investigate the importance of interactions between dark matter substructures for the mass loss they suffer whilst orbiting within a sample of high-resolution galaxy cluster mass cold dark matter (CDM) haloes formed in cosmological N -body simulations. We have defined a quantitative measure that gauges the degree to which interactions are responsible for mass loss from substructures. This measure indicates that interactions are more prominent in younger systems when compared to older more relaxed systems. We show that this is due to the increased number of encounters a satellite experiences and a higher mass fraction in satellites. This is in spite of the uniformity in the distributions of relative distances and velocities of encounters between substructures within the different host systems in our sample.
Using a simple model to relate the net force felt by a single satellite to the mass loss it suffers, we show that interactions with other satellites account for ∼30 per cent of the total mass loss experienced over its lifetime. The relation between the age of the host and the importance of interactions increases the scatter about this mean value from ∼25 per cent for the oldest to ∼45 per cent for the youngest system we have studied. We conclude that satellite interactions play a vital role in the evolution of substructure in dark matter haloes and that a significant fraction of the tidally stripped material can be attributed to these interactions.  相似文献   

11.
We employ observationally determined intrinsic velocity widths and column densities of damped Lyman alpha (Lyα) systems at high redshift to investigate the distribution of baryons in protogalaxies within the context of a standard cold dark matter (CDM) model. We proceed under the assumption that damped Lyα systems represent a population of cold, rotationally supported, protogalactic discs, and that the abundance of dark matter haloes is well approximated by a CDM model with critical density and vanishing cosmological constant. Using conditional cross-sections to observe a damped system with a given velocity width and column density, we compare observationally inferred velocity width and column density distributions to the corresponding theoretically determined distributions for a variety of disc parameters and CDM normalizations. In general, we find that the observations cannot be reproduced by the models for most disc parameters and CDM normalizations. Whereas the column density distribution favours small discs with large neutral gas fraction, the velocity width distribution favours large and thick discs with small neutral gas fraction. The possible resolutions of this problem in the context of this CDM model may be (1) an increased contribution of rapidly rotating discs within massive dark matter haloes to damped Lyα absorption, or (2) the abandoning of simple disc models within this CDM model for damped Lyα systems at high redshift. Here the first possibility may be achieved by supposing that damped Lyα system formation occurs only in haloes with fairly large circular velocities, and the second possibility may result from a large contribution of mergers and double discs to damped Lyα absorption at high redshift.  相似文献   

12.
Popular models for describing the luminosity-density profiles of dynamically hot stellar systems (e.g. Jaffe, Hernquist, Dehnen) were constructed with the desire to match the deprojected form of an   R 1/4  light profile. Real galaxies, however, are now known to have a range of different light-profile shapes that scale with mass. Consequently, although highly useful, the above models have implicit limitations, and this is illustrated here through their application to a number of real galaxy density profiles. On the other hand, the analytical density profile given by Prugniel & Simien closely matches the deprojected form of Sérsic   R 1/ n   light profiles – including deprojected exponential light profiles. It is thus applicable for describing bulges in spiral galaxies, dwarf elliptical galaxies, and both ordinary and giant elliptical galaxies. Moreover, the observed Sérsic quantities define the parameters of the density model. Here we provide simple equations, in terms of elementary and special functions, for the gravitational potential and force associated with this density profile. Furthermore, to match galaxies with partially depleted cores, and better explore the supermassive black hole/galaxy connection, we have added a power-law core to this density profile and derived similar expressions for the potential and force of this hybrid profile. Expressions for the mass and velocity dispersion, assuming isotropy, are also given. These spherical models may also prove appropriate for describing the dark matter distribution in haloes formed from ΛCDM cosmological simulations.  相似文献   

13.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

14.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

15.
16.
On the nature of superoutbursts in dwarf novae   总被引:1,自引:0,他引:1  
We determine a crucial feature of the dark halo density distribution from the fact that the luminous matter dominates the gravitational potential at about one disc scalelength R d, but at the optical edge     the dark matter has already become the main component of the galaxy density. From the kinematics of 137 spirals we find that the dark matter halo density profiles are self-similar at least out to R opt and show core radii much larger than the corresponding disc scalelengths. The luminous regions of spirals consist of stellar discs embedded in dark haloes with roughly constant density. This invariant dark matter profile is very difficult to reconcile with the fundamental properties of the density distribution of cold dark matter haloes. With respect to previous work, the present evidence is obtained by means of a robust method and for a large and complete sample of normal spirals.  相似文献   

17.
We study the mass distribution in six nearby  ( z < 0.06)  relaxed Abell clusters of galaxies A0262, A0496, A1060, A2199, A3158 and A3558. Given the dominance of dark matter in galaxy clusters, we approximate their total density distribution by the Navarro, Frenk & White (NFW) formula characterized by virial mass and concentration. We also assume that the anisotropy of galactic orbits is reasonably well described by a constant and that galaxy distribution traces that of the total density. Using the velocity and position data for 120–420 galaxies per cluster we calculate, after removal of interlopers, the profiles of the lowest order even velocity moments, dispersion and kurtosis. We then reproduce the velocity moments by jointly fitting the moments to the solutions of the Jeans equations. Including the kurtosis in the analysis allows us to break the degeneracy between the mass distribution and anisotropy and constrain the anisotropy as well as the virial mass and concentration. The method is tested in detail on mock data extracted from the N -body simulations of dark matter haloes. We find that the best-fitting Galactic orbits are remarkably close to isotropic in most clusters. Using the fitted pairs of mass and concentration parameters for the six clusters, we conclude that the trend of decreasing concentration for higher masses found in the cosmological N -body simulations is consistent with the data. By scaling the individual cluster data by mass, we combine them to create a composite cluster with 1465 galaxies and perform a similar analysis on such sample. The estimated concentration parameter then lies in the range  1.5 < c < 14  and the anisotropy parameter in the range  −1.1 < β < 0.5  at the 95 per cent confidence level.  相似文献   

18.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   

19.
We present a new method of constraining the mass and velocity anisotropy profiles of galaxy clusters from kinematic data. The method is based on a model of the phase-space density, which allows the anisotropy to vary with radius between two asymptotic values. The characteristic scale of transition between these asymptotes is fixed and tuned to a typical anisotropy profile resulting from cosmological simulations. The model is parametrized by two values of anisotropy, at the centre of the cluster and at infinity, and two parameters of the NFW density profile, the scale radius and the scale mass. In order to test the performance of the method in reconstructing the true cluster parameters, we analyse mock kinematic data for 20 relaxed galaxy clusters generated from a cosmological simulation of the standard Λ cold dark matter model. We use Bayesian methods of inference and the analysis is carried out following the Markov Chain Monte Carlo approach. The parameters of the mass profile are reproduced quite well, but we note that the mass is typically underestimated by 15 per cent, probably due to the presence of small velocity substructures. The constraints on the anisotropy profile for a single cluster are in general barely conclusive. Although the central asymptotic value is determined accurately, the outer one is subject to significant systematic errors caused by substructures at large clustercentric distance. The anisotropy profile is much better constrained if one performs joint analysis of at least a few clusters. In this case, it is possible to reproduce the radial variation of the anisotropy over two decades in radius inside the virial sphere.  相似文献   

20.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号