首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This is a study of the stability of strange dwarfs, superdense stars with a small quark core (M 0core /M < 0.017) and an extended crust consisting of atomic nuclei and a degenerate electron gas where the density may be two orders of magnitude greater than the maximum density for white dwarfs. For a given equation of state, the mass, total number of baryons, and radius of strange dwarfs are uniquely determined by the central energy density ρ c and the energy density ρ tr of the crust at the surface of the quark core. Thus, the entire range of variation of ρ c and ρ tr must be taken into account in studying the stability of these configurations. This can be done by examining a series of configurations with a fixed rest mass M 0 (total baryon number) of the quark core and different masses of the crust. In each series, ρ tr ranges from the value for white dwarfs to ρ drip = 4.3∙1011 g/cm3, at which free neutrons are created in the crust. According to the static criterion for stability, stability is lost in an individual series when the mass of the strange dwarf reaches a maximum as a function of ρ tr . Translated from Astrofizika, Vol. 52, No. 2, pp. 325–332 (May 2009).  相似文献   

2.
Strange quark stars with a crust and strange dwarfs consisting of a compact strange quark core and an extended crust are investigated in terms of a bag model. The crust, which consists of atomic nuclei and degenerate electrons, has a limiting density of cr=drip=4.3·1011 g/cm3. A series of configurations are calculated for two sets of bag model parameters and three different values of cr (109 g/cm3 cr drip) to find the dependence of a star's mass M and radius R on the central density. Sequences of stars ranging from compact strange stars to extended strange dwarfs are constructed out of strange quark matter with a crust. The effect of the bag model parameters and limiting crust density cr on the parameters of the strange stars and strange dwarfs is examined. The strange dwarfs are compared with ordinary white dwarfs and observational differences between the two are pointed out.  相似文献   

3.
We investigate the influence of the following parameters on the crust properties of strange stars: the strange quark mass (m s), the strong coupling constant (αc) and the vacuum energy density (B). It is found that the mass density at the crust base of strange stars cannot reach the neutron drip density. For a conventional parameter set of m s=200 MeV, B 1/4 = 145 MeV and αc = 0.3, the maximum density at the crust base of a typical strange star is only 5.5 × 1010 gcm-3, and correspondingly the maximum crust mass is 1.4 ×10-6 M. Subsequently, we present the thermal structure and the cooling behavior of strange stars with crusts of different thickness, and under different diquark pairing gaps. Our work might provide important clues for distinguishing strange stars from neutron stars.  相似文献   

4.
The stability of strange dwarfs for quark cores with M 0core /M = 10−4, has been studied by calculating, in each individual case, a series of strange dwarfs with configurations in which 5 ⋅ 10−4, 10−3, 5 ⋅ 10−3, 10−2, 1.31 ⋅ 10−2, 1.6 ⋅ 10−2, 1.7 ⋅ 10−2, 2 ⋅ 10−2, ranges from the values in white dwarfs to ρ drip = 4.3 ⋅ 1011 g/cm3, at which free neutrons are produced in the crust. For the series with M 0core /M < 0.0131, stability is lost when ρ tr < ρ drip . For the series with M 0core /M > 0.0131, the equality ρ tr = ρ drip is reached before the strange dwarf attains its maximum mass. Although the frequency of the radial pulsations in the fundamental mode obeys ω02 > 0 for these configurations, they are unstable with respect to transitions into a strange star state with the same total number of baryons and a radius on the order of that of neutron stars. An energy on the order of the energy in a supernova explosion is released during these transitions. It is shown that the gravitational red shift of white and strange dwarfs are substantially different for low and limiting (high) masses.  相似文献   

5.
Models of strange quark stars with a crust consisting of atomic nuclei and degenerate electrons, maintained by an electrostatic barrier at the surface of the strange quark matter, are investigated for a realistic range of parameters of the MIT bag model. The density at which neutrons escape from nuclei, ρ = ρdrip, is taken as the maximum possible boundary density of the crust. Series of strange stars are calculated as a function of central density. Configurations with masses of 1.44 and 1.77 M{ie330-1} and a gravitational redshift Zs = 0.23, corresponding to the best-known observational data, are investigated. The presence of a crust results in the existence of a minimum mass for strange stars, and also helps to explain the glitch phenomenon of pulsars within the framework of the existence of strange quark matter. Translated from Astrofizika, Vol. 42, No. 3, pp. 439–448, July–September, 1999.  相似文献   

6.
Questions of the equilibrium, stability, and observational manifestations of strange stars are considered, in which electrical neutralization of the quark matter is provided by positrons, as occurs for some sets of bag parameters resulting in a stiffer equation of state. Such models consist entirely of self-contained, strange quark matter and their maximum mass reaches 2.4–2.5 M with a radius of 13–14 km. The cooling of such strange quark stars both in the absence and in the presence of mass accretion is investigated. It is shown that in the absence of mass accretion onto the strange star, the dependence of temperature (T, K) on age (t, yr) depends very little on the mass of the configuration and has the form T ≈ 2.3·108r−1/5. If the star’s initial temperature is sufficiently high (T0≥2·1010K), then the total number of electron-positron pairs emitted does not depend on it and is determined only by the total mass of the configuration. In the case of accretion, the annihilation of electrons of the infalling fatter with positrons of the strange quark matter results in the emission of γ-rays with an energy of∼0.5 MeV, by observing which one can distinguish candidates for strange stars. The maximum temperature of strange stars with mass accretion is calculated. Translated from Astrofizika, Vol. 42, No. 4, pp. 617–630, October–December, 1999.  相似文献   

7.
A model red giant with a mass of 5 M a luminosity of 41,740 L, and a radius of 960 R and with a strange quark star as its core is constructed, and it is compared with a Thorne-Zytkow object having similar integrated parameters. The difference in internal structure is manifested right at the dense core: matter above the core is held off only by γ rays from the strange star, and convection is maintained down to the strange star. The lifetime of a red giant containing a strange star turns out to be almost 500 times shorter than that of a Thorne-Zytkow object — on the order of 105 years. Translated from Astrofizika, Vol. 41. No. 4, pp. 533–544, October–December, 1998.  相似文献   

8.
A broad sample of computed realistic equations of state of superdense matter with a quark phase transition is used to construct a series of models of neutron stars with a strange quark core. The integral characteristics of the stellar configurations are obtained: gravitational mass, rest mass, radius, relativistic moment of inertia, and red shift from the star's surface, as well as the mass and radius of the quark core within the allowable range of values for the central pressure. The parameters of some of the characteristic configurations of the calculated series are also given and these are studied in detail. It is found that a new additional region of stability for neutron stars with strange quark cores may exist for some models of the equation of state.  相似文献   

9.
A class of well behaved charged superdense star models of embedding class one is obtained by taking perfect fluid to be interior matter. In the process we come across the models for white dwarf, quark and neutron stars. Maximum mass of the star of this class is found to be 6.716998M Θ with its radius is 18.92112 Km. In the absence of charge the models reduce to Schwarzchild’s interior model with constant density.  相似文献   

10.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

11.
We present a variety of well behaved classes of Charge Analogues of Tolman’s iv (1939). These solutions describe charged fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. These solutions give us wide range of parameter for every positive value of n for which the solution is well behaved hence, suitable for modeling of super dense stars. keeping in view of well behaved nature of these solutions, one new class of solutions is being studied extensively. Moreover, this class of solutions gives us wide range of constant K (0.3≤K≤0.91) for which the solution is well behaved hence, suitable for modeling of super dense stars like Strange Quark stars, Neutron stars and Pulsars. For this class of solutions the mass of a star is maximized with all degree of suitability, compatible with Quark stars, Neutron stars and Pulsars. By assuming the surface density ρ b =2×1014 g/cm3 (like, Brecher and Caporaso in Nature 259:377, 1976), corresponding to K=0.30 with X=0.39, the resulting well behaved model has the mass M=2.12M Θ, radius r b ≈15.27 km and moment of inertia I=4.482×1045 g cm2; for K=0.4 with X=0.31, the resulting well behaved model has the mass M=1.80M Θ, radius r b ≈14.65 km and moment of inertia I=3.454×1045 g cm2; and corresponding to K=0.91 with X=0.135, the resulting well behaved model has the mass M=0.83M Θ, radius r b ≈11.84 km and moment of inertia I=0.991×1045 g cm2. For n=0 we rediscovered Pant et al. (in Astrophys. Space Sci. 333:161, 2011b) well behaved solution. These values of masses and moment of inertia are found to be consistent with other models of Neutron stars and Pulsars available in the literature and are applicable for the Crab and the Vela Pulsars.  相似文献   

12.
In an investigation of the evolution of homogeneous, isentropic, stars through stages of diminishing entropy, Rakavy and Shaviv (1968) have recently found that stars of mass less thanM c (Chandrasekhar's limiting mass for white dwarfs) evolve into white dwarfs, while stars of mass greater thanM c approach a (singular) state of minimum entropy. An elementary explanation of these results is given and qualitative effects of general relativity are discussed. It is found that stars which are lighter than the Oppenheimer and Volkoff (1939) limit become white dwarfs, while heavier stars must become dynamically unstable at a finite stage in their evolution.  相似文献   

13.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

15.
The interior structure of Jupiter serves as a benchmark for an entire astrophysical class of liquid–metallic hydrogen-rich objects with masses ranging from ~0.1M J to ~80M J (1M J = Jupiter mass = 1.9e30 g), comprising hydrogen-rich giant planets (mass < 13M J) and brown dwarfs (mass > 13M J but ~ < 80M J), the so-called substellar objects (SSOs). Formation of giant planets may involve nucleated collapse of nebular gas onto a solid, dense core of mass ~0.04M J rather than a stellar-like gravitational instability. Thus, detection of a primordial core in Jupiter is a prime objective for understanding the mode of origin of extrasolar giant planets and other SSOs. A basic method for core detection makes use of direct modeling of Jupiter’s external gravitational potential terms in response to rotational and tidal perturbations, and is highly sensitive to the thermodynamics of hydrogen at multi-megabar pressures. The present-day core masses of Jupiter and Saturn may be larger than their primordial core masses due to sedimentation of elements heavier than hydrogen. We show that there is a significant contribution of such sedimented mass to Saturn’s core mass. The sedimentation contribution to Jupiter’s core mass will be smaller and could be zero.  相似文献   

16.
Taking into account the peculiar properties of hybrid stars, stars containing both a core of strange quark matter and the solid crust of a neutron star, and employing a fully self-consistent second-order correction technique, we study the time scale of bulk viscosity dissipation at the low temperature limit (T < 109 K) and with this time scale we calculate the critical spin frequency of the hybrid star. It is found that its minimal value is 704.42 Hz (corresponding to a pulse period of 1.42 ms). When this is compared with the periods of neutron and strange stars, a better interpretation of the observational data is obtained.  相似文献   

17.
The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [{Ba/Mg}]--[{Mg/H}] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass M ms ≤ 18 M are infertile sources and the SNe II with 20 M M ms ≤ 40 M are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20 M M ms ≤ 40 M with compared to the all massive stars is about∼ 18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproduced.  相似文献   

18.
It is known that intermediate and low-mass stars evolve finally to white dwarfs of mass characteristically centred around 0.6M . The observed luminosity distribution and the theoretical cooling curves of such white dwarfs are used in this work to estimate the rate of formation of these and, hence, of their progenitors (although not uniquely) in the solar neighbourhood as a function of time. It is found that the star formation rate has remained fairly constant over the past 10–12 billion years, and that the observed number density of the local white dwarfs match quite well with the one expected from the mass functions of the local stars.  相似文献   

19.
We study acoustic oscillations (eigenfrequencies, velocity distributions, damping times) of normal crusts of strange stars. These oscillations are very specific because of huge density jump at the interface between the normal crust and the strange matter core. The oscillation problem is shown to be self-similar. For a low (but non-zero) multipolarity l , the fundamental mode (without radial nodes) has a frequency of ∼300 Hz and mostly horizontal oscillation velocity; other pressure modes have frequencies ≳20 kHz and almost radial oscillation velocities. The latter modes are similar to radial oscillations (having approximately the same frequencies and radial velocity profiles). The oscillation spectrum of strange stars with crust differs from the spectrum of neutron stars. If detected, acoustic oscillations would allow one to discriminate between strange stars with crust and neutron stars and constrain the mass and radius of the star.  相似文献   

20.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号