首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We show different expressions of distribution functions (DFs) which depend only on the two classical integrals of the energy and the magnitude of the angular momentum with respect to the axis of symmetry for stellar systems with known axisymmetric densities. The density of the system is required to be a product of functions separable in the potential and the radial coordinates, where the functions of the radial coordinate are powers of a sum of a square of the radial coordinate and its unit scale. The even part of the two-integral DF corresponding to this type of density is in turn a sum or an infinite series of products of functions of the energy and of the magnitude of the angular momentum about the axis of symmetry. A similar expression of its odd part can be also obtained under the assumption of the rotation laws. It can be further shown that these expressions are in fact equivalent to those obtained by using Hunter & Qian's contour integral formulae for the system. This method is generally computationally preferable to the contour integral method. Two examples are given to obtain the even and odd parts of their two-integral DFs. One is for the prolate Jaffe model and the other for the prolate Plummer model.
It can be also found that the Hunter–Qian contour integral formulae of the two-integral even DF for axisymmetric systems can be recovered by use of the Laplace–Mellin integral transformation originally developed by Dejonghe.  相似文献   

2.
Anisotropic distribution functions for spherical galaxies   总被引:1,自引:1,他引:0  
A method is presented for finding anisotropic distribution functions for stellar systems with known, spherically symmetric, densities, which depends only on the two classical integrals of the energy and the magnitude of the angular momentum. It requires the density to be expressed as a sum of products of functions of the potential and of the radial coordinate. The solution corresponding to this type of density is in turn a sum of products of functions of the energy and of the magnitude of the angular momentum. The products of the density and its radial and transverse velocity dispersions can be also expressed as a sum of products of functions of the potential and of the radial coordinate. Several examples are given, including some of new anisotropic distribution functions. This device can be extended further to the related problem of finding two-integral distribution functions for axisymmetric galaxies.  相似文献   

3.
The Boltzmann moment equations are solved to determine the velocity ellipsoid in a particle disk near an isolated satellite resonance. In a coordinate frame which rotates with the pattern speed of the perturbation potential, the solutions are stationary functions of the azimuthal angle. From the velocity ellipsoid we obtain the stress tensor due to particle collisions and consequently, the viscous angular momentum flux. We show that the magnitude of the rate of deformation tensor in a perturbed particle disk is bounded from above by KΩ(1 + τ2)12, where Ω is the orbital angular velocity, τ is the optical depth, and K is a dimensionless constant of order unity. It is also found that in sufficiently perturbed regions there are ranges of azimuthal angle within which the radial component of the angular momentum flux is negative. It is even possible for the angular momentum luminosity, the radial flux integrated over azimuth, to be negative. These results are important for understanding sharp edges and the decay of density waves in planetary rings. They are also relevant to the damping of differential precession and eccentricity in narrow ringlets.  相似文献   

4.
Under perturbations from outer bodies, the Earth experiences changes of its angular momentum axis, figure axis and rotational axis. In the theory of the rigid Earth, in addition to the precession and nutation of the angular momentum axis given by the Poisson terms, both the figure axis and the rotational axis suffer forced deviation from the angular momentum axis. This deviation is expressed by the so-called Oppolzer terms describing separation of the averaged figure axis, called CIP (Celestial Intermediate Pole) or CEP (Celestial Ephemeris Pole), and the mathematically defined rotational axis, from the angular momentum axis. The CIP is the rotational axis in a frame subject to both precession and nutation, while the mathematical rotational axis is that in the inertial (non-rotating) frame. We investigate, kinematically, the origin of the separation between these two axes—both for the rigid Earth and an elastic Earth. In the case of an elastic Earth perturbed by the same outer bodies, there appear further deviations of the figure and rotational axes from the angular momentum axis. These deviations, though similar to the Oppolzer terms in the rigid Earth, are produced by quite a different physical mechanism. Analysing this mechanism, we derive an expression for the Oppolzer-like terms in an elastic Earth. From this expression we demonstrate that, under a certain approximation (in neglect of the motion of the perturbing outer bodies), the sum of the direct and convective perturbations of the spin axis coincides with the direct perturbation of the figure axis. This equality, which is approximate, gets violated when the motion of the outer bodies is taken into account.  相似文献   

5.
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.  相似文献   

6.
Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions.  相似文献   

7.
The problem triaxial satellite having a plane of dynamical symmetry in the restricted problem of three bodies has been studied. The first integrals are established and the general solution of the problem can be written in quadratures. The results show that the semi-major axis of the satellite orbit and its rotational angular momentum remain unchanged. The singular solution of this problem has been considered and the elements of satellite orbit can be determined.  相似文献   

8.
Prolate Jaffe models for galaxies   总被引:1,自引:0,他引:1  
We introduce a class of prolate Jaffe models for elliptical galaxies, which are a further extension of Jaffe's spherical models of axisymmetric elliptical systems, and study the properties of their densities, circular velocities, velocity dispersions and two-integral even distribution functions. The form of the potential allows the density to be expressed simply as a function of the potential and radial coordinate R . The models have finite total mass and their densities at large distances decay radially as r −4, except on the major axis, where the densities decay as r −3. It is known from Hunter's formulae that the velocity dispersions for prolate models can be expressed in terms of elementary functions of R and z , unlike those for the oblate Jaffe models recently given by Jiang, and that the prolate models have anisotropic velocity distributions. Thus the prolate models are easier to study than the oblate models. It is also found that the two-integral even distribution functions on the physical boundary of the galaxies increase monotonically with the relative energy, for the prolate models. Furthermore, numerical calculation shows that the two-integral even distribution functions generated from their densities are non-negative, even for very 'squeezed' prolate Jaffe models. However, the edge-on projected surface densities for these prolate models cannot be expressed as simply as for the oblate models.  相似文献   

9.
We discuss the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence.Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. We develop the old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds.It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations we find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits.  相似文献   

10.
Peter Bodenheimer 《Icarus》1977,31(3):356-368
The planet Jupiter is assumed to have formed as a subcondensation in the solar nebula. The initial phase of its evolution is one of hydrostatic contraction with radiative energy transport. Calculations of evolutionary sequences through this phase are presented, including the effects of angular momentum. The calculations are carried out in two space dimensions under the assumptions of axial symmetry, constancy of angular velocity on cylindrical surfaces about the rotation axis, a pressure-density relation given by the polytrope of index 3, conservation of angular momentum, and a homogeneous composition. The results show that under certain physically reasonable initial distributions of density and angular momentum the formation of a central planet and a rotating circumplanetary envelope is possible, while under assumptions a point of instability is reached that probably results in the breakup of the condensation by fission into two or more parts. The models are discussed with reference to the present angular momenta of Jupiter and its regular satellites.  相似文献   

11.
The phenomenon of negative viscosity-alpha in convectively unstable Keplerian accretion discs is discussed. The convection is considered as a random flow with an axisymmetric mesoscale pattern. Its correlation tensor is computed with a time-averaging procedure using Kley's 2D hydrocode. There is a distinct anisotropy between the turbulence intensities in the radial and azimuthal directions, i.e. the radial velocity rms dominates the azimuthal one. As a consequence, an extra term in the expression for the turbulent transport of angular momentum appears which does not vanish for rigid rotation ('Λ-effect'). It is negative ('inwards transport') and even seems to dominate the positive contribution of the eddy viscosity representing outwards transport of angular momentum. For a turbulence model close to that of the mixing-length theory, the rotational influence on the anisotropy of the turbulence intensities,     , and the covariance  〈 u ' R u ' φ 〉  – representing the angular momentum transport – is computed and compared with the accretion disc simulations. Indeed, the negative angular momentum transport can be explained with the observed dominance of the radial turbulence intensity. If, on the other hand, in turbulence fields the azimuthal intensity would dominate or the turbulence is even isotropic, then we always find a positive transport of the angular momentum.  相似文献   

12.
We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.  相似文献   

13.
The partial reduction procedure of the rotational symmetry of the N-body problem means to only fix the direction of the total angular momentum, leaving the norm of the total angular momentum unfixed and the rotational symmetry around this direction unreduced. In this article, we present a conceptual link between this procedure, appearing as an intermediate step in the total reduction procedure of the rotational symmetry, with the symplectic cross-section theorem of Guillemin–Sternberg. As an application of this link, we present some alternative proofs of the symplecticity of the Delaunay and Deprit coordinates, which are important symplectic coordinates in the perturbative study of celestial mechanics.  相似文献   

14.
We investigate the Cassini's laws which describe the rotational motion in a 1:1 spin-orbit resonance. When this rotational motion follows the conventional Cassini's laws, the figure axis coincides with the angular momentum axis. In this case we underline the differences between the rotational Hamiltonian for a 'slow rotating' body like the Moon and for a 'fast rotating' body like Phobos. Then, we study a more realistic rotational Hamiltonian where the angle J between the figure axis and the angular momentum axis could be different from zero. This Hamiltonian has not been studied before. We have found a new particular solution for this Hamiltonian which could be seen as an extension of the Cassini's laws. In this new solution the angle J is constant, which is not zero, and the precession of the angular momentum plane is equal to the mean motion of the argument of pericenter of the rotating body. This type of rotational motion is only possible when the orbital eccentricity of the rotating body is not zero. This new law enables describing in particular, the Moon mean rotational motion for which the mean value of the angle J is found to be equal to 103.9±0.7 s of arc.  相似文献   

15.
We consider gravitational instability of the dust layer in the midplane of a protoplanetary disk with turbulence and shear stresses between the gas in the disk and that in the dust layer. We solve a linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation. We take into account the gas drag of solid particles (dust aggregates), turbulent diffusion and the velocity dispersion of particles, and the perturbation of the azimuthal velocity of gas in the layer upon the transfer of angular momentum from solid particles to it and from this gas to the surrounding gas in the disk. We obtain and solve the dispersion equation for the layer with the ratio of surface densities of the dust phase and gas being well above unity. The following parameters of gravitational instability in the dust layer are calculated: the critical surface density of solid matter and the Stokes number of particles corresponding to the onset of instability, the wavelength range in which instability occurs, and the rate of its growth as a function of the perturbation wavelength in the circumsolar disk at radial distances of 1 and 10 AU. We show that at 10 AU, the maximum instability growth rate increases due to the transfer of angular momentum of gas in the layer to gas outside it, a new maximum emerges at a longer wavelength, a long-wavelength instability “tail” forms, and the critical surface density initiating instability decreases relative to that determined without the transfer of angular momentum to gas outside the layer. None of these effects are observed at 1 AU, since instability in this region probably develops faster than the transfer of angular momentum to the surrounding gаs of a protoplanetary disk occurs.  相似文献   

16.
The problems of fragmentation, angular momentum, and magnetic flux during star formation are reviewed briefly. Then the resolution of the angular momentum problem through magnetic braking is studied rigorously.A disk-like interstellar cloud of uniform density cl is given an initial angular velocity o about its axis of symmetry, which isaligned with an initially uniform, frozen-in magnetic field. Torsional Alfvén waves transport angular momentum from the cloud to the external medium, which has a uniform density ext . The angular velocity of the cloud ( cl ) is determined analytically as a function of space and time for different ratios cl / ext (the only free parameter in the equations), representing different stages of contraction. Despite dissimilar transient response of the cloud (or fragment) structure to different initial conditions, the characteristic time for magnetic braking of the rotation of the cloud (or fragment) as a whole is remarkably insensitive to the initial conditions and independent of the stage of contraction. The latter conclusion is in agreement with an approximate result obtained recently (Mouschovias, 1978; 1979a).A cylindrical cloud (or fragment) of uniform density is also imparted an initial angular velocity about its axis of symmetry with respect to the external medium. The frozen-in magnetic field is now initially radial andperpendicular to the axis of symmetry. In this case magnetic braking becomes more efficient upon contraction. It is more efficient than the aligned rotator case typically by one order of magnitude. The angular momentum problem can be resolved in about 106 yr during the early stages of cloud contraction. Planetary systems, such as the Sun-Jupiter pair, become dynamically possible. A stage exists in which a cloud (or fragment) is in retrograde rotation with respect to its surroundings. This provides the first and only observable prediction of magnetic braking in action. It also constitutes a natural explantation of retrograde rotation in stellar and planetary systems.This work was supported in part by the National Science Foundation under grant NSF AST-77-23568.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

17.
We created a self-consistent triaxial stellar system through the cold disipationless collapse of 100,000 particles whose evolution was followed with a multipolar code. The resulting system rotates slowly even though its total angular momentum is zero, i.e., it offers an example of figure rotation. The potential of the system was subsequently approximated with interpolating formulae yielding a smooth potential stationary in the rotating frame. The Lyapunov exponents could then be computed for a randomly selected sample of 3,472 of the bodies that make up the system, allowing the recognition of regular and partially and fully chaotic orbits. The regular orbits were Fourier analyzed and classified using their locations on the frequency map. A comparison with a similar non-rotating model showed that the fraction of chaotic orbits is slightly but significantly enhanced in the rotating model; alternatively, there are no significant differences between the corresponding fractions neither of partially and fully chaotic orbits nor of long axis tubes, short axis tubes, boxes and boxlets among the regular orbits. This is a reasonable result because the rotation causes a breaking of the symmetry that may increase chaotic effects, but the rotation velocity is probably too small to produce any other significant differences. The increase in the fraction of chaotic orbits in the rotating system seems to be due mainly to the effect of the Coriolis force, rather than the centrifugal force, in good agreement with the results of other investigations.  相似文献   

18.
通过角动量守恒计算,证明了原始星云角动量不足,单纯靠星云自转惯性离心力无法抗衡中心部位星云的吸引力,无法在星云赤道处形成星云盘.原始星云角动量不足,同时星云收缩时径向方向速度不等,内快外慢,结果中心部位星云形成太阳,外部赤道部位星云物质因赶不上内部星云物质收缩而掉队形成星云盘.再由星云盘分裂、掉队形成星云环;星云环形成行星、卫星.对太阳系一些主要特征,作了分析和说明.  相似文献   

19.
The secular effect of YORP torque on the rotational dynamics of an asteroid in non-principal axis rotation is studied. The general rotational equations of motion are derived and approximated with an illumination function expanded up to second order. The resulting equations of motion can be averaged over the fast rotation angles to yield secular equations for the angular momentum, dynamic inertia and obliquity. We study the properties of these secular equations and compare results to previous research. Finally, an application to several real asteroid shapes is made, in particular we study the predicted rotational dynamics of the asteroid Toutatis, which is known to be in a non-principal axis state.  相似文献   

20.
Wittmann  A. 《Solar physics》1974,34(1):11-14
In a first order approximation the influence of meridional circulations in a spherical shell on the radial dependence of the angular velocity is studied. Due to stationarity the flux of angular momentum which is transported through any sphere by the circulations must be cancelled by the flux of angular momentum due to turbulent friction. If the circulation goes equatorward at the outer surface the law of rotation must be such that angular momentum is transported in outward direction through the sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号