首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A process-based 3D numerical model for surfzone hydrodynamics and beach evolution was established. Comparisons between the experimental data and model results proved that the model could effectively describe the hydrodynamics, sediment transport feature and sandbar migration process in the surfzone with satisfactory precision. A series of numerical simulations on the wave breaking and shoaling up to a barred beach were carried out based on the model system. Analyzed from the model results, the wave-induced current system in the surfzone consists of two major processes, which are the phase-averaged undertow caused by wave breaking and the net drift caused by both of the nonlinear wave motion and surface roller effect. When storm waves come to the barred beach, the strong offshore undertow along the beach suppresses the onshore net drift, making the initial sandbar migrate to the seaside. Under the condition of calm wave environment, both the undertow and net drift flow to the shoreline at the offshore side of the sandbar, and then push the initial sandbar to the shoreline. The consideration of surface roller has significant impact on the modeling results of the sandbar migration. As the roller transfer rate increases, the sandbar moves onshore especially under the storm wave condition.  相似文献   

2.
L. Benedet  J.H. List   《Coastal Engineering》2008,55(12):1224-1236
Numerical modeling of a beach nourishment project is conducted to enable a detailed evaluation of the processes associated with the effects of nearshore dredge pits on nourishment evolution and formation of erosion hot spots. A process-based numerical model, Delft3D, is used for this purpose. The analysis is based on the modification of existing bathymetry to simulate “what if” scenarios with/without the bathymetric features of interest. Borrow pits dredged about 30 years ago to provide sand for the nourishment project have a significant influence on project performance and formation of erosional hot spots. It was found that the main processes controlling beach response to these offshore bathymetric features were feedbacks between wave forces (roller force or alongshore component of the radiation stress), pressure gradients due to differentials in wave set-up/set-down and bed shear stress. Modeling results also indicated that backfilling of selected borrow sites showed a net positive effect within the beach fill limits and caused a reduction in the magnitude of hot spot erosion.  相似文献   

3.
The aim of this study is to analyse the effects in space and time of relict sand-dredging activities on macrobenthic assemblages, in an area situated offshore Montalto di Castro (central Tyrrhenian Sea, Italy), and to analyse the recolonisation processes of macrobenthos in the dredged areas. The area in question is characterised by relict sand deposits (Holocenic paleo-beaches), used for beach nourishment along the Latium coast. The effects of sand extraction on benthic assemblages were investigated before, during and after three dredging operations. The sites analysed are located within the dredged areas (inside stations) and in neighbouring, not dredged, areas (outside stations). The results showed that the impact of sand extraction was confined to the dredged stations and to the areas in proximity to the dredged areas. During dredging activities, the structure of benthic assemblages within the impacted stations was characterised by low species richness and diversity. Both the direct removal of sediment and the re-suspension and consequent deposition of fine sediment affected benthic assemblages of the impacted stations. A few months after the dredgings, a recolonisation process was still observed at all the impacted stations. A gradual recolonisation process was observed at those stations affected by only one dredging, whereas a different recolonisation was observed at those stations affected by two dredgings over time. This study suggests that differences of re-colonisation processes of benthic assemblages are related to the intensity of dredging operations in terms of dredging frequency.  相似文献   

4.
《Coastal Engineering》2006,53(5-6):419-439
The flow on a plane beach with a random, directionally spread wave field was simulated with a Boussinesq model. The random wave spectra were directionally symmetric with their central direction perpendicular to the beach, so no constant longshore current was generated. Variable wave-averaged currents were generated because of the spatially variable wave field, and sometimes formed offshore directed rip currents that appear in variable longshore locations. The rip currents are associated with a vortex pair which is generated within the surfzone and subsequently propagates offshore. Analysis of the vorticity balance show that the main vorticity input occurs within the inner surfzone. Three different beach slopes and four different wave spectra are simulated. The frequency, duration, and intensity of the transient rips depend on both the beach slope and the incident wave spectra. The results have important engineering implications for the transport of material in the nearshore zone, in particular on longshore uniform beaches.  相似文献   

5.
桩式离岸堤保滩促淤工程消浪效果试验研究   总被引:9,自引:0,他引:9  
在上海奉贤南北港保滩促淤工程中,采用了一种新型结构型式-桩式离岸堤,并通过物理模式试验进行了桩式离岸堤消浪效果研究。针对离岸堤通常建于近岸水区破波带的特点,重点研究水深,堤高以及堤身结构对波浪衰减的影响,同时对桩式离岸堤堤后水域的波浪底流速 分析探讨。研究结果表明,桩式离岸堤不仅具有良好的消浪效果。而且可在较大范围内改变波态,即由引起水体剧烈紊动的破波转变为浅水推进波,从而有效地改善海滩上的动力条件,促进海滩免受侵蚀,是一种具有广泛应用前景和新型保滩促淤结构。  相似文献   

6.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   

7.
本研究基于第三代海浪模式SWAN(Simulating Wave Nearshore),对茅尾海及其邻近海域波浪场进行了为期1 a的数值模拟,利用实测资料验证了该模型的可靠性。根据模型计算结果分析了茅尾海海域波浪要素的时空分布特征,在此基础上进一步探讨了波浪能量的输入耗散过程以及海滩修复对波浪能量空间分布的影响。研究发现茅尾海海域年平均有效波高空间分布不均,湾外年平均有效波高约0.2-0.4 m,湾内仅0.05-0.15 m,且存在较明显的季节变化特征,夏季波高大于冬季。研究区海域夏季波能输入与耗散项均大于冬季,全年主要的波能耗散过程为底摩擦耗散且空间分布不均,存在波能耗散密集区和稀疏区。海滩修复前后海滩前沿波浪能量分布变化显著,海滩修复后滩面前沿纵向轴线分布波高平均增加23.7%,波能增加63.0%,横向轴线上波高增加百分比随离岸距离的变大而逐渐减小,最大波高增加百分比为13.9%,最大波能增加43.8%。研究结果表明合理的海滩修复工程能够有效提升作用于滩面的波浪能量,从而改善修复海滩的动力条件,降低海滩泥化风险,有利于提高海滩质量。该研究可为低能海岸的海滩修复工程提供一定的科学依据。  相似文献   

8.
通过物理模型实验研究了海岸沙坝剖面和滩肩剖面的形成和演化过程,给出了稳定的沙坝剖面和滩肩剖面的几何特征。实验中考虑了两种初始坡度(1∶20和1∶10)和不同波高的规则波和不规则波,讨论了不同初始坡度海岸上破碎波空间分布特征。结果表明,沙坝产生后存在向岸和离岸两种运动形态,但最终将停留在稳定位置。稳定的沙坝剖面对应不同初始坡度和波浪存在不同的大沙坝和小沙坝分布。沙坝剖面由长时间小波高波浪序列作用后可转化为稳定滩肩剖面,该剖面不依赖于波浪和初始坡度。实验也给出了平衡剖面与理论曲线的对比以及剖面上泥沙粒径的分布。  相似文献   

9.
Several levels of increasing complexity of transferring wave information from offshore to nearshore have been studied to quantify their influence on extreme beach erosion estimates. Beach profiles which have been monitored since 1976 were used to estimate extreme beach erosion and compared to predictions. Examination of the wave propagation assumptions revolves around two types of offshore to nearshore transfer: excluding or including wave breaking and bottom friction. A second complication is whether still water level variations (ocean tide plus storm surge) are included.The inclusion of various combinations of wave propagation processes other than shoaling and refraction in the wave transfer function changes on the extreme erosion distribution tail through lowering estimates above one year return period. This brings the predicted tails closer to the observations, but does not capture the upper limit of storm demand implied by the extensive beach profile data set. Including wave breaking has a marked effect on probabilistic estimates of beach erosion. The inclusion of bottom friction is less significant. The inclusion of still water level variability in the wave transfer calculation had minimal impact on results for the case study site, where waves were transferred from offshore to water at 20 m depth. These changes were put into perspective by comparing them to changes resulting from limiting beach erosion by adjusting the statistical distributions of peak wave height and storm duration to have maximum limits. We conclude that the proposed improvements on wave transformation methods are as significant as limiting wave erosion potential and worth including.  相似文献   

10.
《Coastal Engineering》2005,52(2):151-158
A winter storm eroded a small (160,000 m3) beach fill at Torrey Pines State Beach in southern California. The fill, constructed in April 2001, was a 600-m long flat-topped berm, extending from a highway revetment seaward about 80 m, terminating in a 2-m tall, near-vertical scarp. The size distributions of the preexisting and fill beach sand were similar (median ∼0.2 mm). A total of 56 cross-shore transects were surveyed between the revetment and 8 m water depth biweekly along 2.7 km of the beach centered on the fill area. During summer and fall, the incident significant wave heights measured 1 km offshore of the fill usually were below 1 m, the scarp was not overtopped, and the fill did not change greatly. The beach face alongshore of the fill accreted, consistent with the usual seasonal cycle in southern California. During a storm (3 m significant wave height) in late November, erosion began when wave uprushes overtopped the scarp and reached the relatively flat elevated fill, where the overwash flowed alongshore to initially small depressions that channeled the flow seawards. The offshore flow rapidly deepened and widened the channels, which maintained steep vertical faces and eroded by slumping. Thirty hours after the storm began, the shoreward end of the eroded channels had retreated to the highway revetment, leaving uneroded sand peninsulas protruding seawards ∼50 m from the revetment and elevated ∼1.75 m above the surrounding beach. Erosion of the beach adjacent to the fill was much less variable alongshore than within the fill region. During the next few days, the peninsulas eroded almost completely.  相似文献   

11.
The formation of offshore ripples in the zone under irregular waves   总被引:1,自引:0,他引:1  
In this article, results obtained from an experimental investigation conducted to determine the wave-induced geometric characteristics of offshore ripples and bars are presented. The experiments were performed using irregular waves. Natural beach sand was used in the study, where the mean diameter was 0.35 mm and the specific gravity was 2.63. The initial slope of the beach was 1:5. Different wave groups were generated over the initially flat beach, and a number of characteristics were determined. These include the ripple number, individual and average ripple heights, individual and average ripple lengths and the length of the offshore bar. The results of the experimental study were evaluated and empirical expressions based on the results were formulated.  相似文献   

12.
To improve the current understanding of the reduction of tsunami-like solitary wave runup by the pile breakwater on a sloping beach, we developed a 3D numerical wave tank based on the CFD tool OpenFOAM in this study. The Navier Stokes equations were applied to solve the two-phase incompressible flow, combined with an LES model to solve the turbulence and a VOF method to capture the free surface. The adopted model was firstly validated with existing empirical formulas for solitary wave runup on the slope without the pile structure. It is then validated using our new laboratory observations of the free surface elevation, the velocity and the pressure around a row of vertical slotted piles subjected to solitary waves, as well as the wave runup on the slope behind the piles. Subsequently, a set of numerical simulations were implemented to analyze the wave reflection, the wave transmission, and the shoreline runup with various offshore wave heights, offshore water depths, adjacent pile spaces and beach slopes. Finally, an improved empirical equation accounting for the maximum wave runup on the slope was proposed by taking the presence of the pile breakwater into consideration.  相似文献   

13.
根据山东半岛西北部25条实测岸滩剖面及相关表层沉积物、波浪、潮流资料,通过计算浪潮作用指数K和波浪-沉积物参数Ω,确定研究区主控动力因素并对海滩动力地貌类型进行划分,在此基础上应用Dean平衡剖面模型对实测剖面进行拟合,探讨了该模型的适用性及其参数物理意义等问题。山东半岛西北部整体为浪控海岸,刁龙嘴-三山岛岸段、海北嘴-石虎嘴岸段和三山岛-海北嘴岸段均属过渡型海滩,屺坶岛-栾家口岸段属消散型海滩。研究区实测剖面与Dean模型的拟合结果整体较好,部分剖面(剖面1、剖面2、剖面3、剖面5、剖面8)由于发育离岸沙坝,使其形态与Dean模型预测的平滑上凹的形态特点存在一定差别。屺坶岛-栾家口岸段(剖面19~剖面24)受外海侧桑岛及沿岸龙口人工岛群影响,与Dean模型预测结果存在较大差别,Dean模型对发育槽-坝体系的海滩的拟合仍具有局限性。Dean模型中m和A分别反映了海滩剖面反射性和泥沙沉速,与海滩动力地貌类型判别公式计算结果吻合较好。  相似文献   

14.
A modeling scheme based on dynamic coupling of a high-resolution 1D cross-shore model to a 2DH area model is developed to calculate the total longshore sediment transport (LST) rate in wave-dominated coasts. The purpose of this coupling strategy aims at resolving the LST with a high-resolution (both temporally and spatially) inside the surf-zone and with a coarser spatial resolution seaward of the surf-zone. The 2DH area model operates on a fixed pre-designed regional grid (parent grid) and the 1D cross-shore model is dynamically coupled to the boundary of the parent grid with a time-varying domain, starting from the first wave breaking point and ending at the maximum wave set-up point. The time-varying domain is generated in the 1D model by resolving the landward wave propagation from the offshore conditions provided by the 2DH area model at every time step. With a high-resolution cell size the 1D model resolves the wave propagation processes and resulting LST along the profile. The coupled model is applied to study the LST in the Pomeranian Bight at the southern Baltic Sea. Simulation results are compared with three other different hierarchical modeling methods (from empirical formulas such as CERC and Kamphuis to a 2DH area simulation). The comparative study indicates that the dynamically coupled model can be a reliable tool in practical applications, especially for the areas where hydrodynamics is controlled by complex bathymetry (e.g., multiple longshore bars) or morphologically induced circulation patterns.  相似文献   

15.
New large-scale laboratory data are presented on the influence of long waves, bichromatic wave groups and random waves on sediment transport in the surf and swash zones. Physical model testing was performed in the large-scale CIEM wave flume at UPC, Barcelona, as part of the SUSCO (swash zone response under grouping storm conditions) experiment in the Hydralab III program (Vicinanza et al., 2010). Fourteen different wave conditions were used, encompassing monochromatic waves, bichromatic wave groups and random waves. The experiments were designed specifically to compare variations in beach profile evolution between monochromatic waves and unsteady waves with the same mean energy flux. Each test commenced with approximately the same initial profile. The monochromatic conditions were perturbed with free long waves, and then subsequently substituted with bichromatic wave groups with different bandwidth and with random waves with varying groupiness. Beach profile measurements were made at half-hourly and hourly intervals, from which net cross-shore transport rates were calculated for the different wave conditions. Pairs of experiments with slightly different bandwidth or wave grouping show very similar net cross-shore sediment transport patterns, giving high confidence to the data set. Consistent with recent small-scale experiments, the data clearly show that in comparison to monochromatic conditions the bichromatic wave groups reduce onshore transport during accretive conditions and increase offshore transport during erosive conditions. The random waves have a similar influence to the bichromatic wave groups, promoting offshore transport, in comparison to the monochromatic conditions. The data also indicate that the free long waves promote onshore transport, but the conclusions are more tentative as a result of a few errors in the test schedule and modifications to the setup which reduced testing time. The experiments suggest that the inclusion of long wave and wave group sediment transport is important for improved near-shore morphological modeling of cross-shore beach profile evolution, and they provide a very comprehensive and controlled series of tests for evaluating numerical models. It is suggested that the large change in the beach response between monochromatic conditions and wave group conditions is a result of the increased significant and maximum wave heights in the wave groups, as much as the presence of the forced and free long waves induced by the groupiness. The equilibrium state model concept can provide a heuristic explanation of the influence of the wave groups on the bulk beach profile response if their effective relative fall velocity is larger than that of monochromatic waves with the same incident energy flux.  相似文献   

16.
This paper illustrates the results of an experimental investigation (model-to-prototype length ratio equal to 12) carried out to reproduce the cross-shore evolution of nourished sandy beaches. New two-dimensional experiments were performed to study the short-term response of the cross-shore profile for both “soft” (unprotected) and “mixed” (protected by submerged breakwaters) beach fill projects. Due to the simplified reproduction of prototype conditions in a two-dimensional geometry, only cross-shore sediment transport is considered. The results are related to the immediate post-nourishment evolution and far from beach fill boundaries where long-shore gradients of long-shore sediment transport are likely to be negligible. Three different pseudo-random wave trains were generated in order to simulate both accretive and erosive conditions. A fourth wave train, characterised by time-varying incident wave spectrum was generated for the investigation of the beach response to simplified storm time evolution. Dimensionless experimental results are given in terms of wave parameters, key features of cross-shore profile evolution and sediment transport rates. Furthermore, being highly resolved in both time and space, experimental data are suitable for mathematical model validation. It was observed that submerged breakwater switches erosive conditions to slightly accretive, at least within the tested experimental range.  相似文献   

17.
This study focuses on barred beach shoreface nourishments physically simulated in a wave flume. The attack of a schematic storm on three different nourishments is analysed. The apex and waning storm phases lead respectively to offshore and onshore sediment transports. Nourishments in the trough and on the outer bar feed the bar and increase wave dissipation offshore. The bar acts as a wave filter and reduces shore erosion (lee effect). In contrast, nourishment on the beach face leads mostly to shore feeding and reconstruction (feeder effect). With successive nourishments, the beach face clearly becomes steeper and onshore sediment transport is reduced during moderate wave climates. The surface grain size analysis reveals marked variations. Coarser sediments are sorted on the bar and the upper beach face. These locations correspond to large wave dissipation zones during the storm apex.  相似文献   

18.
Littoral sediment transport is the main reason for coastal erosion and accretion. Therefore, various types of structures are used in shore protection and littoral sediment trapping studies. Offshore breakwaters are one of these structures. Construction of offshore breakwaters is one of the main countermeasures against beach erosion. In this paper, offshore protection process is studied on the effect of offshore breakwater parameters (length, distance and gap), wave parameters (height, period and angle) and on sediment accumulation ratio, one researched in a physical model. In addition to the experimental studies, numerical model in which the formulae of the sediment discharge (i.e. the formulae of CERC and Kamphuis), was used was developed and employed. The results of the experimental and numerical studies were compared with each other.  相似文献   

19.
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5° to 10° in comparison to normally incident waves.  相似文献   

20.
For the study of the cross-shore wave-induced hydrodynamics in the swash zone, a numerical model is developed based on the one-dimensional non-linear shallow water (NSW) equations for prediction of hydrodynamic parameters in the swash zone. In order to evaluate the accuracy of the outputs of the numerical model, the model's predictions in terms of water surface elevations and cross-shore velocities, are compared to field data from full-scale experiments conducted on three sites with different beach slope; mild and steep, several bed particle sizes and under various incident wave conditions. The quantitative and qualitative comparison of the results of the numerical model and the full-scale data reveals that the model can generally predict many aspects of the flow in the surf and swash zone on both types of beach. The accuracy is adequate for application in a sediment transport study. Considering the time-history and probability distribution of water surface elevation, the model is generally more accurate on steep beaches than on the mild beach. The model can adequately simulate the dominant frequency across the beach and saturation of higher frequencies on both mild and steep beaches for various incident wave energy characteristics. With regard to the horizontal (cross-shore) velocity, the sawtooth shape of time-history and negative acceleration of water are well predicted by the model for both mild and steep beaches. Due to the uncertainties in maximum and minimum values of velocity data, clear judgement about the accuracy of the numerical model in this matter was not possible. However, the comparison of the minimum velocities (offshore direction) revealed that the application of friction factors below the range which is suggested by literature best match the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号