首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper deals with the influence of soil non-linearity, introduced by soil liquefaction, on the soil-foundation–structure interaction phenomena. Numerical simulations are carried out so as to study an improvement method to reduce the liquefaction potential in a sandy soil profile subjected to a shaking. The efficiency of the preloading in both the mitigation of a liquefiable soil and the reduction of induced structure relative settlements is showed. However, the intervention at the foundation soil modifies the dynamic characteristics of soil–structure system and it seems to increase the induced seismic forces during earthquake. In addition, a numerical parametric analysis is performed so as to quantify the impact of the uncertainties associated with the input signal on both the ground motion and the apparition of liquefaction phenomena.  相似文献   

2.
We applied three-dimensional geostatistical interpolation to evaluate the extent of liquefiable materials at two sites that liquefied during the 1994 Northridge Earthquake. The sites were the Balboa Blvd site and the Wynne Ave. site located in the alluvial San Fernando Valley. The estimated peak ground accelerations at the sites are 0.84 g (Balboa Blvd) and 0.51 g (Wynne Ave.). These sites were chosen because surface effects due to liquefaction were not predicted using available techniques based on thickness and depth of liquefiable layers (Ishihara [Ishihara K. Stability of natural deposits during earthquakes. Proceedings of the 11th international conference on soil mechanics and foundation engineering, vol. 1. Rotterdam, The Netherlands: A.A. Balkema; 1985. p. 321–76.]) and the Liquefaction Potential Index (Iwasaki et al. [Iwasaki T, Tatsuoka F, Tokida K, Yasuda S. A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proceedings of the second international conference on microzonation, San Francisco; 1978. p. 885–96.]). During the earthquake, both sites experienced surface effects including ground cracking and extension as a result of liquefaction. Foundations and buried utilities were damaged at both sites. The sites were investigated after the event by researchers with the United States Geologic Survey using standard penetration tests (SPT) and cone penetration tests. In this paper, liquefaction potential was estimated for each soil sample using results from SPTs according to the updated Seed and Idriss simplified procedure. The probability of liquefaction was estimated by applying an indicator transform to the results of the liquefaction potential calculation. We compared our results to detailed geologic mapping of the sites performed by other researchers. Using geostatistical interpolation to estimate the probability of liquefaction is a useful supplement to geologic evaluation of liquefaction potential. The geostatistical analysis provides an estimate of the continuous volume of liquefiable soil along with an assessment of confidence in an interpolation. The probability of liquefaction volumes compare well with those predicted using geologic interpretations.  相似文献   

3.
The seismic performance of geotechnical works is significantly affected by ground displacement. In particular, soil–structure interaction and effects of liquefaction play major roles and pose difficult problems for engineers. An International Standard, ISO23469, is being developed for addressing these issues in a systematic manner within a consistent framework. The objective of this paper is to give an overview of this International Standard.In this International Standard, the seismic actions are determined through two stages. The first stage determines basic seismic action variables, including the earthquake ground motion at the site, the potential for earthquake-associated phenomena such as liquefaction and induced lateral ground displacement. These basic variables are used, in the second stage, for specifying the seismic actions for designing geotechnical works. In the second stage, the soil–structure interaction plays a major role. Types of analyses are classified based on a combination of static/dynamic analyses and the procedure for soil–structure interaction classified as follows:
– simplified: soil–structure interaction of a global system is modeled as an action on a substructure;
– detailed: soil–structure interaction of a global system is modeled as a coupled system.
Keywords: Design; Geotechnical works; Liquefaction; International Standard; Seismic actions; Seismic hazard analysis  相似文献   

4.
5.
It is recognized that soil improvement techniques are not economically feasible for mitigation of liquefaction-induced lifeline damages because of the large areas served. Instead, it is more practical to execute an emergency action immediately after an earthquake in order to prevent or minimize possible lifeline failures caused by the soil liquefaction. Essential element in the implementation of such a plan is the real-time identification of liquefied sites, which can be successfully achieved by analyzing surface strong motion records. In this paper, the thresholds of two ground motion parameters—the peak surface velocity and horizontal shaking frequency of the ground—that are associated with the soil liquefaction are assessed utilizing the theory of one-dimensional wave propagation in linearly elastic medium. Obtained simple expressions for both parameters are used to estimate their ranges and are examined against several case histories. Minimum level of peak ground velocity (PGV) is verified by experimental data from shaking-table test. Linear relationships between amplitude ground motion parameters at liquefied-soil sites are also developed. Results suggest that liquefaction is likely to take place when PGV exceeds 0.10 m/s and that the upper bound of horizontal ground vibration frequency after liquefaction occurrence is 1.3–2.3 Hz.  相似文献   

6.
A coupled continuum-discrete hydromechanical model was utilized to analyze the meso-scale pore fluid flow and micro-scale solid phase deformation of saturated granular soils. The fluid motion was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid particles. Well established semi-empirical relationships were used to quantify the fluid–particle interactions. Numerical simulations were conducted to investigate the mechanisms of granular deposit liquefaction in the presence of a critical upward pore fluid flow as well as when subjected to a dynamic base excitation. The outcome of these simulations was consistent with experimental observations and revealed valuable information on the micro-mechanical characteristics of soil liquefaction and associated loss of stiffness and strength.  相似文献   

7.
Laboratory seismic liquefaction studies have generally dealt with homogeneous soil conditions only, although stratified soils exist for various soil deposits. The main objective of this research project was to compare the behavior of stratified and homogeneous sand–silt–gravel composites during seismic liquefaction conditions for various silt and gravel contents. An experimental program was undertaken in which a total of eighty stress-controlled undrained cyclic triaxial tests were performed. Two methods of sample preparation were used for each soil type. These methods included moist tamping (representing homogeneous soil conditions) and sedimentation (representing layered soil conditions). The silt contents ranged from 0 to 50%, and soils with 10 and 30% gravel contents were tested. The confining pressure in all test series was 100 kPa. The results indicate that the liquefaction resistances of layered and uniform soils are not significantly different, despite the fact that the soil fabric produced by the two methods of sample preparation is totally different. This finding justifies applying the laboratory tests results to the field conditions for the range of variable studied.  相似文献   

8.
Seismic stability, liquefaction, and deformation of earth structures are critical issues in geotechnical earthquake engineering practice. At present, the equivalent linear approach is considered the ‘state of practice’ in common use. More recently, dynamic analyses incorporating nonlinear, effective-stress-based soil models have been used more frequently in engineering applications. This paper describes a bounding surface hypoplasticity model for sand [Wang ZL. Bounding surface hypoplasticity model for granular soils and its applications. PhD Dissertation for the University of California at Davis, U.M.I. Dissertation Information Service, Order No. 9110679; 1990; Wang ZL, Dafalias YF, Shen CK. Bounding surface hypoplasticity model for sand. ASCE, J Eng Mech 1990;116(5):983–1001; Wang ZL, Makdisi FI. Implementing a bounding surface hypoplasticity model for sand into the FLAC program. In: Proceedings of the international symposium on numerical modeling in geomechanics. Minnesota, USA; 1999. p. 483–90] incorporated into a two-dimensional finite difference analysis program [Itasca Consulting Group, Inc. FLAC (Fast Lagrangian Analysis of Continua), Version 4. Minneapolis, MN; 2000] to perform nonlinear, effective-stress analyses of soil structures. The soil properties needed to support such analyses are generally similar to those currently used for equivalent linear and approximate effective-stress analyses. The advantages of using a nonlinear approach are illustrated by comparison with results from the equivalent linear approach for a rockfill dam. The earthquake performance of a waterfront slope and an earth dam were evaluated to demonstrate the model's ability to simulate pore-pressure generation and liquefaction in cohesionless soils.  相似文献   

9.
基于现场开展土体液化问题研究势必成为今后土动力学中的一个重要发展方向。目前人工激振下的现场液化试验方法还不够成熟,尚需进一步探索和发展。本文从试验设备组成、场地地震动激励、试坑布置、饱和砂土模型制备、数据测量与采集等5个方面论述该方法中的主要技术问题。研究表明:动力加载系统激励产生的地震动在0~7m/s2;系统工作频率13~15Hz,饱和砂土模型与基础边缘的距离在0.5~2.5m范围内,更适合进行液化试验;应用水沉法现场制备饱和砂土模型,要重点注意试坑防水和尺寸定位的问题;数据测量与采集中要充分考虑对现场液化问题认识不够这一因素的影响,需对数据测量与采集提出附加要求;试验实例初步表明,该方法可行,适合开展液化问题研究。  相似文献   

10.
This paper investigates the effect of nature of the earthquake on the assessment of liquefaction potential of a soil deposit during earthquake loading. Here, the nature of the earthquake is included via the parameter V, the ‘pseudo-velocity’, that is the gross area under the acceleration record of the earthquake at any depth below the ground surface. By analysing a number of earthquake records from different parts of the world, a simple method has been outlined to assess the liquefaction potential of a soil deposit based on the pseudo-velocity. For many earthquakes occurred in the past, acceleration records are available or can be computed at the ground level or some other depth below the ground surface. Therefore, this method is a useful tool at the preliminary design stage to determine the liquefaction potential before going into a detailed analysis. Validation of the method is carried out using a database of case histories consisting of standard penetration test values, acceleration records at the ground surface and field observations of liquefaction/non-liquefaction. It can be seen that the proposed method has the ability to predict soil liquefaction potential accurately, despite its simplicity.  相似文献   

11.
Physical modeling tests were conducted on pile foundations to measure the seismic performance of a new ground improvement technology, called passive site stabilization, for use on sites susceptible to liquefaction and liquefaction-induced lateral spreading. The method involves the slow injection of a low-viscosity stabilizer in conjunction with the natural groundwater flow. The effectiveness of the treatment using dilute colloidal silica as the stabilizer was tested by two centrifuge models that simulated soil–pile interaction of a 2×2 end-bearing pile group embedded in a multilayer soil deposit of 10-m thickness. The models utilized a laminar box and involved gently inclined soil profiles with and without the applied soil improvement. Response of the pile groups and the lateral spreading behaviors of the treated and untreated soil under a simulated base shaking were investigated and compared. The results showed that treatment with dilute colloidal silica stabilizer minimized permanent lateral deformations and reduced the liquefaction potential of the soil. Significant reductions occurred in the measured pile bending moments and axial forces because the layer treated with dilute colloidal silica did not liquefy. Thus, the technique can be an alternative to traditional methods of ground improvement.  相似文献   

12.
Shaking table tests were conducted by means of a large-scale laminar box with 4 m in length, 2 m in width and 2 m in height in order to investigate behavior of a soil-pile-superstructure system in liquefiable ground. A model two-storey structure, supported by a pile group, was set in a saturated sand deposit, and subjected to a sinusoidal base motion with increasing amplitude. Discussions are focused on the transient behavior until soil liquefaction occurs. Main interests are characteristics of springs used in a sway-rocking model and a multi-freedom lumped mass (MFLM) model that are frequently used in soil–pile interaction analysis. The spring constant in the sway-rocking model is represented by restoring force characteristics at the pile head, and that in the MFLM system is represented by an interaction spring connecting the pile to the free field. The transient state prior to soil liquefaction is shown to be important in the design of a pile because dynamic earth pressure shows peak response in this state. The reduction of the stiffness due to excess porewater generation and strain dependent nonlinear behavior is evaluated.  相似文献   

13.
A fully coupled finite element code based on mixture theory is developed. Prévost's multi-surface constitutive model is tailored to three-dimensional loads and used to predict effective stresses. A new viscous boundary is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb the two dilatational waves and the shear wave.Two soil deposits and two dams, with different slopes, composed by loose and dense sands have been subjected to the Pacoima accelerogram. Results show how the liquefaction propagates in the soil deposits and earth dams. The importance of the coupling between dilatancy–contractancy and filtration is highlighted by a parametric investigation. Phenomena such as liquefaction and cyclic mobility are reproduced, indicating the robustness of the constitutive model and finite element simulations. As an outcome of the parametric analysis, the seismic stability of dams cannot be improved by decreasing the upstream or downstream slopes.  相似文献   

14.
Time and space variant soil properties at a liquefied site were simultaneously identified in the time domain by using borehole array strong motion records. During soil liquefaction at a site, soils usually show a wide variety of non-linear behavior along the depth as well as non-stationary behavior. Strong ground motion records were obtained at Port Island borehole array observatory, Kobe, during the 1995 Hyogoken-Nanbu earthquake. In this study, the instrumented soil was modeled by the equivalent linear MDOF system, and an extended Kalman filter with local iteration was employed for the identification of the soils. The identification process was successfully conducted, and the stress–strain relationships of the soils at the liquefied site were obtained from different depths all at once.  相似文献   

15.
The purpose of this paper is to investigate the effects of liquefaction on modal parameters (frequency and damping) of pile‐supported structures. Four physical models, consisting of two single piles and two 2 × 2 pile groups, were tested in a shaking table where the soil surrounding the pile liquefied because of seismic shaking. The experimental results showed that the natural frequency of pile‐supported structures may decrease considerably owing to the loss of lateral support offered by the soil to the pile. On the other hand, the damping ratio of structure may increase to values in excess of 20%. These findings have important design consequences: (a) for low‐period structures, substantial reduction of spectral acceleration is expected; (b) during and after liquefaction, the response of the system may be dictated by the interactions of multiple loadings, that is, horizontal, axial and overturning moment, which were negligible prior to liquefaction; and (c) with the onset of liquefaction due to increased flexibility of pile‐supported structure, larger spectral displacement may be expected, which in turn may enhance P‐delta effects and consequently amplification of overturning moment. Practical implications for pile design are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The 1995 Hyogoken–Nambu earthquake caused severe liquefaction over wide areas of reclaimed land. Furthermore, the liquefaction induced large ground displacement in horizontal directions, which caused serious damage to foundations of structures. However, few analyses of steel pipe piles based on field investigation have so far been conducted to identify the causes and process of such damage. The authors conducted a soil–pile-structure interaction analysis by applying a multi-lumped-mass-spring model to a steel pipe pile foundation structure to evaluate the causes and process of its damage. The damage process analyzed in the time domain corresponded well with the results of detailed field investigation. It was found that a large bending moment beyond the ultimate plastic moment of the pile foundation structure was induced mainly by the large ground displacement caused by liquefaction before lateral spreading of the ground and that the displacement appeared during the accumulating process of the excess pore water pressure.  相似文献   

17.
Contrary to many laboratory investigations, common empirical correlations from in situ tests consider that the increase in the percentage of fines leads to an increase of the cyclic liquefaction resistance of sands. This paper draws upon the integrated Critical State Soil Mechanics framework in order to study this seemingly not univocal effect. Firstly the effect of fines on the Critical State Line (CSL) is studied through a statistical analysis of a large data set of published monotonic triaxial tests. The results show that increasing the content of non-plastic fines practically leads to a clockwise rotation of the CSL in (e–ln p) space. The implication of this effect on cyclic liquefaction resistance is subsequently evaluated with the aid of a properly calibrated critical state elasto-plastic constitutive model, as well as a large number of published experimental results and in situ empirical correlations. Both sets of data show clearly that a fines content, less than about 30% by weight, may prove beneficial at relatively small effective stresses (p0<50–70 kPa), such as the in situ stresses prevailing in most liquefaction case studies, and detrimental at larger confining stresses, i.e. the stresses usually considered in laboratory tests. To the extent of these findings, a correction factor is proposed for the practical evaluation of liquefaction resistance in terms of the fines content and the mean effective confining stress.  相似文献   

18.
The paper presents a mathematical model for the deformation of soil under irregular cyclic loading in the simple-shear conditions. The model includes the possible change in the effective pressure in saturated soil due to the cyclic shearing, the reciprocal influence of the effective pressure on the response of the soil to the shear loading, and the pore pressure dissipation due to the seepage of the pore fluid. The hysteresis curves for the strain–stress relationship are constructed in such a way that they produce both the required backbone curve and the required damping ratio as functions of the strain amplitude. At the same time, the approach enables the constitutive functions involved in the model to be specified in various ways depending on the soil under study. The constitutive functions can be calibrated independently of each other from the conventional cyclic shear tests. The constitutive model is incorporated in the boundary value problem for the dynamic site response analysis of level ground. A numerical solution is presented for the dynamic deformation and liquefaction of soil at the Port Island site during the 1995 Hyogoken-Nambu earthquake.  相似文献   

19.
This paper provides an insight into the numerical simulation of soil–structure interaction (SSI) phenomena studied in a shaking table facility. The shaking table test is purposely designed to confirm the ability of the numerical substructure technique to simulate the SSI phenomenon. A model foundation–structure system with strong SSI potential is embedded in a dry bed of sand deposited within a purpose designed shaking-table soil container. The experimental system is subjected to a strong ground motion. The numerical simulation of the complete soil–foundation–structure system is conducted in the linear viscoelastic domain using the substructure approach. The matching of the experimental and numerical responses in both frequency and in time domain is satisfying. Many important aspects of SSI that are apparent in the experiment are captured by the numerical simulation. Furthermore, the numerical modelling is shown to be adequate for practical engineering design purposes.  相似文献   

20.
Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with uP formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class ‘B’ analysis of a centrifuge experiment is performed to simulate the dynamic response of level ground sites. The results of the numerical analyses demonstrate the capability of the critical sate two-surface plasticity model in producing pore pressures that are consistent with observations of the behavior of liquefiable sand in the centrifuge test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号