首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
东亚和太平洋上空平均垂直环流----(一)夏季   总被引:23,自引:9,他引:23  
本文利用中央气象局出版的《北半球高空气候图集》中的风场资料,计算了50°E—130°W,0°—50°N范围内,七月平均850mb—100mb各标准层上的垂直运动,分析了不同区域的经向和纬向垂直环流的特点。指出:夏季130°E以西的低纬度为巨大的西南季风环流区,此外在高原的南北两侧还各存在一较小的经向环流圈,影响着高原附近的天气和气候;160°E以东的中低纬度的海洋上空为经典的Hadley环流所控制,其强度和影响的范围自西向东递增;由于青藏高原地形及夏季的热源作用,使其与西半球,南半球和中东太平洋的天气系统产生遥相关;平均直接从青藏高原上升的气流对西太平洋副高的贡献不大,而平均从西边直接下沉到西太平洋副高的气流是从高原以东的大陆上升的。最后根据计算和分析结果给出了青藏高原及其邻近地区三维空间的垂直环流示意图。  相似文献   

2.
本文应用中央气象局出版的“北半球高空气候图集”中的风场资料,计算了45°N以南、北半球范围、7月份850 mb—100 mb各标准等压面层上的平均垂直运动。分析了不同区域经向和纬向垂直环流的特点,并将它与大气中冷热源进行对照。指出:夏季北半球低纬度平均是个Hadley环流,其北是个道环流。形成这种环流形势的主要贡献地区在两个大洋上,这主要与低纬度大气是个热源、共北是个冷源的分布有关。另外,由纬向环流看到,夏季北半球中低纬主要上升运动区和下沉运动区各有两个,这两对上升气流区和下沉气流区构成了夏季北半球中低纬地区垂直环流的大形势。此外,本文还指出夏季青藏高原上空的上升气流向四周流出后所影响的地理区域。  相似文献   

3.
亚洲上空夏季平均环流的结构及其热源分析   总被引:2,自引:2,他引:2  
本文运用Boogaard的资料(对国内部分经过补充订正)和用连续方程计算了亚洲地区各层的垂直运动场。另外设计了一个间接计算热源的方法并计算了该地区的大气热源。在此基础上对亚洲地区夏季(7月)平均环流结构进行了研究。其主要结果如下:(1)在30°N以南地区西太平洋副热带高压的下沉主要来自东侧高空气流,也来自南侧的Hadley环流的上升支和高原及大陆上升气流,后两者均在300mb以下。而30°N以北,高原及大陆上升气流除了部分下沉于西太平洋地区外,主要在太平洋中部槽槽后下沉。(2)亚洲夏季(7月)大气热源中心在孟加拉湾北岸,而不在西藏高原的上空。  相似文献   

4.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年夏季青藏高原地区进行了涡度方程诊断分析,研究了它们的月际变化、逐日变化和日变化,与高原上积云对流活动的强弱变化进行了比较,讨论了夏季高原稳定的环流场维持的物理机制;同时还对同时期热带赤道地区强对流活动区域进行了涡度方程诊断分析,将其涡旋环流场的维持机制与夏季高原地区进行了比较. 通过分析,发现夏季青藏高原月平均涡度方程平衡关系主要是次网格尺度项和散度项的平衡,水平平流项的耗散作用在高空较强,但不如次网格尺度项强,涡度方程其余各项均很小.从月际变化、逐日变化和日变化的比较,发现当积云对流活动发生强弱变化时,ω、D和涡度方程中的散度项、次网格尺度项均伴随很强的相应变化,对应关系很好,说明涡度方程中的次网格尺度项R(余差项)的主要部分来源于积云对流系统的活动,反映了夏季高原上存在的强盛频繁的积云对流活动对高原平均环流场的形成和维持具有重要的作用. 使夏季青藏高原高低层环流场加强的物理机制足高低层气流强大的辐散辐合,耗散机制是积云对流系统对高低层涡度的上下搅拌垂直输送作用和网格尺度水平平流项的非线性耗散作用,其中前者起主要的作用. 从涡旋能量维持的角度看,夏季青藏高原高低层环流场的维持大致是高原尺度环流系统的涡旋能量通过非线性过程,分别向高原区域以外更大尺度的系统和次网格尺度的对流系统输送,输送的损失由强大的高低层辐散辐合气流产生的涡旋能量补充,从而维持了高原地区环流场的稳定.赤道附近热带强对流活动区域环流场的维持机制与夏季高原地区的不同点,主要表现在其高层和低层的区域尺度环流场通过非线性作用都从更大尺度环流场得到涡旋能量,并把涡旋能量转送给次网格尺度积云对流系统,使自身维持稳定.  相似文献   

5.
夏季高原天气系统生命史短,空间尺度小,天气变化剧烈,气压系统又与风场不完全适应,因此,只有500mb和近地面层分析流线图较能正确地反映高原的天气实际情况。1979年5月—8月高原西部新增加了高空地面资料,这就有可能更进一步了解和掌握高原夏季风环流的发生演变特点及天气气候规律。我们分析了1979年5—8月高原地区的逐日流线图,发现它有几种固定的流场型式,有一定的天气区与之配合。现将分型原则及结果介绍如下。  相似文献   

6.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年7月月平均进行分析,计算了垂直速度、散度、垂直剖面函数和速度势函数等物理量以及上升气流轨迹,给出了夏季高原主体地区环流场的主要特征和详细的高原地区不同经纬度剖面垂直环流场的特征和分布. 配合夏季高原高层强大稳定的反气旋高压带,高原主体地区为整层上升气流区,但ω场有东西两个上升中心,它们是两个对流活动上升中心,两部的中心位于狮泉河和改则之间偏北的地区,东部的位于那曲一带. 本文给出了高原地区三个主要的经向环流圈(南北两侧下沉的小环流圈、跨赤道的季风环流圈)的经度位置和高原地区与西太平洋之间发生遥相关的主要纬度位置,发现在跨赤道的季风环流圈中,在赤道以南的下沉气流主要来自高原与15°N之间,从高原上升的气流仅在对流层上部(200hPa左右)跨过赤道.从高原西部上升的气流往往从非洲至印度尼西亚一带跨过赤道,而从高原东部及其东侧我国大陆上升的气流往往下沉在太平洋和北大西洋地区.  相似文献   

7.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年7月月平均进行分析,计算了垂直速度、散度、垂直剖面函数和速度势函数等物理量以及上升气流轨迹,给出了夏季高原主体地区环流场的主要特征和详细的高原地区不同经纬度剖面垂直环流场的特征和分布. 配合夏季高原高层强大稳定的反气旋高压带,高原主体地区为整层上升气流区,但ω场有东西两个上升中心,它们是两个对流活动上升中心,两部的中心位于狮泉河和改则之间偏北的地区,东部的位于那曲一带. 本文给出了高原地区三个主要的经向环流圈(南北两侧下沉的小环流圈、跨赤道的季风环流圈)的经度位置和高原地区与西太平洋之间发生遥相关的主要纬度位置,发现在跨赤道的季风环流圈中,在赤道以南的下沉气流主要来自高原与15°N之间,从高原上升的气流仅在对流层上部(200hPa左右)跨过赤道.从高原西部上升的气流往往从非洲至印度尼西亚一带跨过赤道,而从高原东部及其东侧我国大陆上升的气流往往下沉在太平洋和北大西洋地区.  相似文献   

8.
青藏高原隆升作用于大气临界高度的数值研究   总被引:21,自引:4,他引:17  
张耀存  钱永甫 《气象学报》1999,57(2):157-167
利用P-σ混合坐标系全球大气环流模式研究了青藏高原隆升作用于大气临界高度问题,通过对数值试验结果的分析进一步证实了在高原隆升的过程中存在着一个临界高度,这个高度在夏季约为1500~2000m。当高原总体平均高度超过临界高度后,高原周围地区的气流主要以绕流为主,爬坡气流的速度较小,稳定的高原季风开始形成,高原地区范围内为强大的上升运动区,高原南侧和中国东部地区出现一条明显的雨带,随着高原隆升高度的增高,雨带内的降水量逐渐增加,同时高原西侧附近地区形成一个稳定的感热通量大值带  相似文献   

9.
本文利用P-σ混合座标系的有限区域五层原始方程模式,对高原及其邻近地区不同反照率的情况进行了模拟。经过对比分析指出,由于高原地区反照率增大,高原的加热作用减小,使得东亚地区5月的大气环流有显著变化,使100hPa上的副热带西风急流由高原北边南移到高原的南部上空,对流层低层向高原辐合的气流明显减弱,高原东侧的切变线也南退,而且高原南侧低层准季风环流圈也减弱降低。这说明,高原的热力作用是影响东亚地区环流的重要因子之一。  相似文献   

10.
应用NCEP地面热通量资料, 研究了青藏高原地面感热、潜热的气候状况及其与初夏东亚大气环流之间的关系。发现高原地面热通量的异常将影响高原地区上空的垂直运动与辐散辐合运动, 从而引起东亚地区高度场及风场的异常。同时, 青藏高原地区地面热通量与后期东亚地区的环流变化也有密切关系, 这种关系可为预测东亚地区初夏环流异常提供有意义的指标。  相似文献   

11.
青藏高原绕流和爬流的气候学特征   总被引:2,自引:2,他引:0  
李斐  李建平  李艳杰  郑菲 《大气科学》2012,36(6):1236-1252
本文利用1951~2008 年NCEP/NCAR 再分析资料, 通过绕流和爬流方程, 将高原附近表层风场分解为绕流分量和爬流分量两部分, 计算出了实际大气中的绕流和爬流运动的强度, 分别探讨它们的气候态特征。结果表明:高原主体年平均绕流场围绕高原地形并在高原西南部(32°N, 75°E)附近产生分支, 分支点下游的高原主体南部和北部分别表现为气旋性和反气旋性流型;年平均的爬流分量场沿喜马拉雅山脉辐散, 高原主体为偏南上坡风, 东北部为偏北上坡风。夏季绕流场为气旋式流型, 中心位于高原中部(35°N, 90°E)附近;秋季绕流场围绕高原地形边缘基本为一个反气旋流型。夏季, 高原主体偏南风爬流与偏北风爬流在高原南北中线附近辐合, 除夏季外, 沿高原南侧喜马拉雅山脉为爬流辐散区。高原主体和高原附近的关键区内, 绕流和爬流存在不同的季节循环特征。从绕流和爬流分解公式出发, 本文详细探讨了表面流场的绕流和爬流运动各分量对地形高度及地形梯度的依赖性:经向绕流与纬向绕流比值、经向爬流与纬向爬流分量比值为仅依赖于地形高度的定常值。年平均的绕流及爬流矢量强度随着所处地形高度的升高而逐步增强;从区域分布的角度而言, 高原附近绕流强于爬流的区域范围较广, 绕流占主导地位。地形纯动力强迫产生的爬流运动与观测资料中高原附近的垂直运动具有很高的位置对应关系, 但冬季和夏季均存在强度上的差异。  相似文献   

12.
青藏高原大地形对华南持续性暴雨影响的数值试验   总被引:2,自引:0,他引:2  
何钰  李国平 《大气科学》2013,37(4):933-944
利用新一代中尺度数值预报模式WRF3.2及NCEP/NCAR 逐日4次1°×1°的FNL再分析资料,通过有、无青藏高原以及将高原高度降低到临界高度的数值试验,研究了青藏高原大地形对我国华南地区2010 年5 月一次持续性暴雨过程的影响。试验结果表明:高原大地形对降水的影响显著,随着高原高度的升高,降水增多,高原以东地区的雨带也由北向南移动;高原地形的机械阻挡作用使迎风坡一侧的近地面层附近为强上升运动,背风坡为下沉运动,并分别对应降水的峰值和谷值区;高原对西风气流的爬流、绕流作用明显,高原升高后爬坡作用减弱,以绕流作用为主;高原的加热作用使气流过高原时南支减弱,北支加强,并加强了高原及其东部地区低层的正涡度和高层的负涡度,使高原上空为强烈的上升运动;高原的热力作用使西太平洋副热带高压位置偏南、偏西并稳定维持;高原大地形对形成稳定的高原季风环流圈有重要作用;高原地形高度的作用有利于定常波的形成,波动中心对应强上升运动,形成降水的大值区,稳定维持的定常波使得降水持续集中在同一地区,造成持续性暴雨。  相似文献   

13.
青藏高原大地形对冬季东亚大气环流的影响   总被引:2,自引:1,他引:2  
本文用有限区域的p—σ5层原始方程模式作数值模式,以美国国家气象中心的气候资料及姚兰昌等人计算的1979年1月东亚平均大气加热场作为初始场进行了数值模拟和试验,探讨了青藏高原大地形对冬季东亚大气环流的影响。试验结果表明:(1)冬季东亚加热场的热力作用比青藏高原大地形的动力作用要次一级。(2)冬季青藏高原大地形的动力作用,主要表现在纬向西风过高原的绕流效应和爬坡效应,它们对东亚冬季大气环流平均场的形成具有决定性的贡献。(3)冬季,在东亚地区垂直环流的分布及其强弱基本上取决于青藏高原的动力作用,最强的哈德菜环流出现在西太平洋地区,而不在高原地区。(4)冬季东亚加热场的热力作用主要表现在通过动力作用加强东亚大槽、加强高原南北两侧和日本上空的急流以及东亚地面反气旋。 在冬季,东亚地区的大形势分布主要取决于大地形的动力作用,而冷热源的热力作用则影响着系统的强度。  相似文献   

14.
海南岛附近四季风场的中尺度环流   总被引:10,自引:0,他引:10  
利用一层σ坐标原始方程数值诊断模式研究海南岛,雷州半岛及其四周海域的地面风场特征,在春夏秋冬四季典型盛行气流下试验,均明显呈现绕流,爬坡,辐合线、海陆风和山谷风效应,看出在不同季节下的中尺度环流存在一定的差异。试验表明,区域内的复杂地形和海陆分布是形成各种中尺度环流的重要原因,同时,揭示出本地气候分布的特征与中尺度环流间存在的密切的关系。  相似文献   

15.
青藏高原大地形对夏季东亚大气环流的影响   总被引:3,自引:5,他引:3  
本文采用有限区域五层原始方程模式,以多年月平均的纬向场作为初始场,利用实际资料计算得到的1979年7月东亚地区的平均加热场作为理想加热场,进行了四类不同方案的数值试验。通过模拟得到的温压场及流场等结果,讨论了青藏高原大地形及其加热场的作用。分析结果表明:1.在大尺度地形的纯动力作用影响下,在对流层中、下层,西风气流过高原仍是以绕流为主,这种地形扰动在中纬度(40°N以北)表现得比低纬度明显,在对流层下层比对流层中层明显,300mb上动力扰动已很不明显。2.青藏高原产生的热源(例如,青藏高原感热源和潜热源以及孟加拉地区的潜热源),对于夏季100mb和300mb的强大的亚州反气旋的形成,对500mb以下印度低槽的加深及南亚副热带高压(以下简称南亚副高)带的断裂都有重大贡献。3.夏季,东亚地区的流场受加热场的影响比温压场更为明显,比如500mb以下与海洋地区相通的强大南风通道和加热场有密切关系。4.夏季,在东亚地区50°N以南存在着一个天气尺度的季风环流系统——“季风流管”,这一流管在考虑了加热场的影响后,被很好地模拟出来了。相反,在纯动力作用的试验中,它却始终没有出现,在高原以及南部被Hadley流管所占据。从分析结果来看,孟加拉地区热源对“季风流管”的中段与南段贡献较大。孟加拉地区热源  相似文献   

16.
大中地形对近地面层流场影响的数值模拟   总被引:2,自引:1,他引:2  
钟卫国  罗四维 《高原气象》1989,8(2):156-166
本文对Mass,C.F.等的一层边界层原始方程诊断模式进行了适当修改,用于诊断大、中尺度地形对近地面风场的动力影响。结果表明:(1)它可用来诊断地形对地面气流的动力影响,具有计算量小和一定的模拟能力;(2)1月地面在高原东北侧陕甘宁地区形成反气旋环流中心和从高原北部35°N经高原东部边缘到高原东南角附近地面形成风向辐合线,可能主要受高原的动力影响所致。(3)由于祁连山对1月西风气流的影响,在它的附近形成中尺度气候系统。这些情况与资料分析结果比较一致。  相似文献   

17.
夏季青藏高原对它附近流场影响的数值试验   总被引:1,自引:3,他引:1  
本文利用简单的两层模式和椭园体地形,以纬向气流及常定热源为初始场,进行了青藏高原对它附近环流系统的热力和动力影响的各种数值试验,得到以下一些初步的定性结论: 1.夏季高原上500mb切变线的形成发展主要决定于它的动力影响,但它的热力影响也起到了加强作用。西南低涡的生成在一定条件下完全决定于高原的动力影响,而高原的热力影响是不利于它生成的。孟加拉湾低压的存在也可能与高原的动力作用有关。 2.在青藏高原上空的西风风速较弱时,高原的加热作用对100mb青藏高压的形成与维持影响很大,此时高原南边的热源即使比高原的强很多倍,对这个高压形成的影响也不大。高原的动力作用对100mb青藏高压的生成维持是不利的。  相似文献   

18.
上海世博园上空边界层风垂直变化观测研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用平矩阵风廓线雷达于2007年7月17日至9月28日对上海世博园规划区上空的风垂直分布进行了观测.通过分析该地上空三维风场的日变化,发现夜间以偏西气流为主,白天风速较小,以偏东气流为主,表明该地区以海陆风为主导的环流特征是这一地区的局地环流日变化的基本特征.逐日变化分析表明,在8月2日以前主要以偏西北气流为主,之后基本是以东南气流为主,并且垂直运动特征以上升气流为主,强烈的垂直运动与偏西气流相关密切,同时偏北气流往往带来较强的上升运动.日夜平均廓线分析表明,夜间风速较大,并且夜间风速的垂直变化与白天相比也有很大不同,白天270 m以下风速随高度基本不变,而夜间从近地面向上风速随高度逐渐增大,低层<90 m的范围内白天风速大于夜间风速.城市冠层以上风向的日夜变化不明显,多为偏北气流控制.城郊风廓线的对比表明受城市下垫面粗糙度的影响,城市风速明显比郊区减小.城市和郊区的水平风速变化在城市冠层以上比较接近,相关系数达到了87%.  相似文献   

19.
金妍  李国平 《高原气象》2021,40(2):314-323
利用ERA5再分析资料和融合降水数据,针对2018年5月21-22日发生在中国四川盆地西南部的一次山地突发性暴雨,首先对其降水强度和天气概况进行相关分析,并且通过绕流和爬流方程,将流场分解为绕流和爬流分量,重点探讨地形对于过山气流的影响及其对降水的作用。研究表明:受欧亚中高纬低槽槽后西北气流引导冷空气南下和西南低涡东移的共同影响,在四川盆地西南部山区发生了一次强降水过程。此次降水范围较广、强度大并且降水时间集中,是一次典型的山地突发性暴雨事件。由于地形的阻挡作用,使得来自东北方向的气流发生旋转,产生绕流运动,在盆地内形成局地涡旋。同时盆地和盆周山地之间的地形高度差强迫过山气流产生爬流运动,导致垂直上升运动加强。在绕流与爬流的共同作用下,为此次突发性暴雨的发生发展提供了有利的流场条件。进一步分析得出地形区域内爬流分量略大于绕流分量,即气流对于山地屏障的地形适应以爬流运动为主,绕流运动次之,地形爬流产生的垂直上升运动与雨带的分布密切相关。  相似文献   

20.
本文利用高原四周10年平均的高空资料,计算了高原地区平均气柱三维流场、加热场及其年变化。指出夏季高原四周200mb以下,空气向高原辐合上升,到100mb变为向外辐散,冬季相反。春秋是过渡季节,3月在300mb以上出现上升气流,500mb以下还保存冬季的辐散下沉气流,到5月才转为辐合上升气流。9月到10月又由夏季情况向冬季转化,10月气柱底部又开始出现下沉气流,以后它的厚度增加而转变为冬季的三维流场。 整层气柱3—9月是热源,其它各月是冷源,但气柱底部3月还保留冷源,9月冷源又开始出现。水汽的蒸发及凝结对加热场影响明显,冬季(11—12月及1—2月)水汽在高层起冷源作用,夏季(4—10月)起热源作用,300—400mb释放凝结潜热最强。但在近地面的600mb,2—7月有水汽蒸发冷却,其它各月有水汽凝结加热。从2月到5月气柱迅速增暖而变为热源,主要是感热的贡献,而对6—9月热源的维持潜热的贡献却大于感热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号