首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many have speculated about the presence of a stiff fluid in very early stage of the universe. Such a stiff fluid was first introduced by Zel’dovich. Recently the late acceleration of the universe was studied by taking bulk viscous stiff fluid as the dominant cosmic component, but the age predicted by such a model is less than the observed value. We consider a flat universe with viscous stiff fluid and decaying vacuum energy as the cosmic components and found that the model predicts a reasonable background evolution of the universe with de Sitter epoch as end phase of expansion. More over, the model also predicts a reasonable value for the age of the present universe. We also performed a dynamical system analysis of the model and found that the end de Sitter phase predicted by the model is stable.  相似文献   

2.
A general method to quantize strings in curved space-times is exposed. It treats the space-time metric exactly and the string excitations small as compared with the energy scale of the geometry. The method is applied to cosmological (de Sitter) and black-hole (Schwarzschild) geometries. The critical dimension decreases in one for de Sitter and stays unaltered for black-holes as compared with flat space-time values. Bogoliubov transformations in the context of string theory are derived and the Bogoliubov coefficients describing elastic and inelastic scattering and excitation of modes are computed explicitely. The string-black-hole cross section is derived and a pair mode creation phenomena is found. The quantization and scattering of strings in shockwave geometries (ultrarelativistic boosted black-holes or Aichelburg-Sexl space time) is found to be exactly solvable.  相似文献   

3.
4.
Scalar fields are an important ingredient of modern cosmological models describing the very early universe. If they are of the Higgs field type, scalar fields offer a possibility to understand why the cosmological constant is such a small quantity. This is because of the fact that different ground states are possible for a Higgs field. The unstable ground state gives an inflationary stage of the cosmic evolution and a large cosmological constant whereas the stable ground state has a vanishing cosmological constant and is decisive for the late time behaviour with an Einstein-De Sitter — like expansion law.  相似文献   

5.
The Saez-Ballester field equations for spatially homogeneous and anisotropic Bianchi type-III cosmological models have been solved for pure geometric cosmic string cloud pervading the universe either in the absence or in presence of electromagnetic field. It has been established here that the model does not survive for geometric cosmic string cloud pervading the universe when there is no electromagnetic field. But in presence of electromagnetic field the model can have plausible solutions fostering the idea that strings forming the surface of the world sheet have to co-exist with electromagnetic field.  相似文献   

6.
The evolution of Gaussian quantum states in the de Sitter phase of the early universe is investigated. The potential is approximated by that of an inverted oscillator. We study the origin and magnitude of the density perturbations with special emphasis on the nature of the semiclassical limits  相似文献   

7.
A special form of the Bondi news function can be associated with an infinite static cosmic string. In case of a radiaing isolated system pierced by an infinite cosmic string, the total news function will be composed of two parts — one characterizing the radiation field, the other the string. Some examples are discussed and related to a recently given solution, which was interpreted as an outgoing gravitational wave due to the splitting of an infinite cosmic string.  相似文献   

8.
Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.  相似文献   

9.
Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state (E.O.S.) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally coupling this ratio is ?1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<¼. Therefore we derive a new constraint on the value of our coupling ξ. These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.  相似文献   

10.
We present exact solutions of Einstein's equations that may be interpreted as representing the splitting of a primordial cosmic string imbedded in a perfect fluid Friedmann-Robertson-Walker (FRW) cosmology. The splitting leads to the creation of a bubble whose boundary is given by a gravitational shock wave, expanding from the point of splitting, associated to the motion of the free ends of the string. Inside the bubble we have a perturbed FRW metric. This perturbation is largest near the string ends, producing a sort of wake along the path of the free ends, but decreases rapidly with time and the metric approaches the FRW regime locally everywhere inside the bubble. Similar results are shown to hold also for flat vacuum de Sitter space-times.Supported by a CONICET fellowship.Supported by a CONICOR fellowship.  相似文献   

11.
Homogeneous isotropic cosmological solutions are obtained for a de Sitter type of metric in the presence of a self-gravitating scalar field with cubic nonlinearity. Unlike the usual de Sitter case which is indefinitely expanding it is here interestingly found that in the presence of a nonlinear scalar field the model gives a bounce from a maximum of spatial volume. The possibility of bounce from a maximum, however, disappears when a linear scalar field is considered instead.  相似文献   

12.
Models for the early Universe with the combined influence of scalar fields and vacuum polarization are discussed using phase plane portraints. The results concern the probability of the birth of the Universe, different de Sitter solutions and expressions for scalar perturbations.  相似文献   

13.
Hawking’s radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell’s electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.  相似文献   

14.
We propose a new class of inflationary models in which the scalar field potential governing inflation is generated by the same nonperturbative gauge dynamics that may lead to supersymmetry breaking. Such models satisfy constraints from cosmic microwave background measurements for natural values of the fundamental parameters in the theory. In addition, they have two particularly interesting characteristics: a “blue” spectrum of scalar perturbations, and an upper bound on the total amount of inflation possible.  相似文献   

15.
We study the dynamics of the de Sitter resonance, namely the stable equilibrium configuration of the first three Galilean satellites. We clarify the relation between this family of configurations and the more general Laplace resonant states. In order to describe the dynamics around the de Sitter stable equilibrium, a one-degree-of-freedom Hamiltonian normal form is constructed and exploited to identify initial conditions leading to the two families. The normal form Hamiltonian is used to check the accuracy in the location of the equilibrium positions. Besides, it gives a measure of how sensitive it is with respect to the different perturbations acting on the system. By looking at the phase plane of the normal form, we can identify a Laplace-like configuration, which highlights many substantial aspects of the observed one.  相似文献   

16.
In this paper we present a class of non-stationary solutions of Einstein’s field equations describing embedded Vaidya-de Sitter black holes with a cosmological variable function Λ(u). The Vaidya-de Sitter black hole is interpreted as the radiating Vaidya black hole is embedded into the non-stationary de Sitter space with variable Λ(u). The energy-momentum tensor of the Vaidya-de Sitter black hole is expressed as the sum of the energy-momentum tensors of the Vaidya null fluid and that of the non-stationary de Sitter field, and satisfies the energy conservation law. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor. We find the violation of the strong energy condition due to the negative pressure and leading to a repulsive gravitational force of the matter field associated with Λ(u) in the space-time. We also find that the time-like vector field for an observer in the Vaidya-de Sitter space is expanding, accelerating, shearing and non-rotating. It is also found that the space-time geometry of non-stationary Vaidya-de Sitter solution with variable Λ(u) is Petrov type D in the classification of space-times. We also find the Vaidya-de Sitter black hole radiating with a thermal temperature proportional to the surface gravity and entropy also proportional to the area of the cosmological black hole horizon.  相似文献   

17.
Using the analytic extension method, we study Hawking radiation of an (n+4)-dimensional Schwarzschild-de Sitter black hole. Under the condition that the total energy is conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the relation between the black hole event horizon and cosmological horizon, we obtain the radiation spectrum of de Sitter spacetime. This radiation spectrum is no longer a strictly pure thermal spectrum. It is related to the change of the Bekenstein-Hawking (B-H) entropy corresponding the black hole event horizon and cosmological horizon. The result satisfies the unitary principle. At the same time, we also testify that the entropy of de Sitter spacetime is the sum of the entropy of black hole event horizon and the one of cosmological horizon.  相似文献   

18.
It is shown that the fusion of string is a source of particle production in nucleus-nucleus collisions outside the kinematical limits of nucleon-nucleon collisions. The spectrum of different particles is compared with the high energy data on p-A collisions obtaining a reasonable agreement. Results for A-B collisions at and AGeV are given and possible implications for cosmic rays are examined. Both the enhancement of the cumulative effect and the reduction of multiplicities implied by string fusion should strongly modify the first interactions and the profile of extensive air showers and should be taken into account in their simulation.  相似文献   

19.
We propose a -inflation model that explains a significant part of the COBE signal by primordial cosmic gravitational waves. The primordial density perturbations fulfil both the constraints of large-scale microwave background and galaxy cluster normalization. The model is tested against the galaxy cluster power spectrum and the high-multipole angular cosmic microwave background anisotropy.  相似文献   

20.
Using the Damour–Ruffini method, Hawking radiation from a four-dimensional charged rotating black string in asymptotically anti-de Sitter space–time is investigated. When energy, angular momentum, charge conservations, and the particles’ back-reaction to the space–time are taken into account, the exact emission spectrum near the horizon is calculated. The horizon is not spherical, but can be toroidal and cylindrical. Our results indicate that the spectrum is not purely thermal, which may be consistent with an underlying unitary theory. Moreover, it is a possible mechanism to explain the information loss paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号