首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital cameras, sensitive to specific regions of the ultra-violet (UV) spectrum, have been employed for quantifying sulfur dioxide (SO2) emissions in recent years. The instruments make use of the selective absorption of UV light by SO2 molecules to determine pathlength concentration. Many monitoring advantages are gained by using this technique, but the accuracy and limitations have not been thoroughly investigated. The effect of some user-controlled parameters, including image exposure duration, the diameter of the lens aperture, the frequency of calibration cell imaging, and the use of the single or paired bandpass filters, have not yet been addressed. In order to clarify methodological consequences and quantify accuracy, laboratory and field experiments were conducted. Images were collected of calibration cells under varying observational conditions, and our conclusions provide guidance for enhanced image collection. Results indicate that the calibration cell response is reliably linear below 1500 ppm m, but that the response is significantly affected by changing light conditions. Exposure durations that produced maximum image digital numbers above 32 500 counts can reduce noise in plume images. Sulfur dioxide retrieval results from a coal-fired power plant plume were compared to direct sampling measurements and the results indicate that the accuracy of the UV camera retrieval method is within the range of current spectrometric methods.  相似文献   

2.
A new continuous monitoring system has been developed for the measurement of volcanic gas from the steam well located 3 km north from the summit of Izu-Oshima volcano, Japan. After removing the water vapor using three sequential dehydration methods, CO2 and SO2 contents are measured using IR sensors, and O2 and H2 using a zirconia sensor and a semiconductor sensor, respectively. This system has been in operation without any significant trouble for 3 years.The dehydrated volcanic gas from the well consists of a mixture of CO2, O2 and N2. A decreasing trend of the CO2 content was observed from 1995 to 1998 together with a decrease of volcanic activity. Seasonal changes have also been observed in CO2 and O2 contents, CO2 being higher and O2 lower in summer, which suggests larger contribution of magmatic components in summer. While changes in short-term variation in CO2 and O2 are influenced by atmospheric pressure changes; the CO2 content correlates inversely with atmospheric pressure unlike O2 with some hours delay. In contrast, the H2 content increased intermittently up to 1200 ppm one to several hours after a sudden drop in the atmospheric pressure and without any apparent correlation with seasonal changes.This system allows us to study temporal variation in chemical composition of volcanic gas during quiescent periods of volcanic activity of Izu-Oshima volcano, and might help us detect anomalous changes before future eruptive events.  相似文献   

3.
Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996–1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95–98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from −26 to −57‰. A negative δD–Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of “fresh” batches of magma and an increasing of volcanic activity, respectively.The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.  相似文献   

4.
Video-based hydrometry continues to develop for contactless discharge measurements, automated flood gauging stations and the use of crowd-sourced flood videos for discharge reconstruction. Irrespective of the velocimetry algorithm used (LSPIV, STIV, PTV…), orthorectification of the images is necessary beforehand, so that each pixel has the same known physical size. Most times, the orthorectification transformation is a plane-to-plane projection from the water surface to the camera sensor. Two approaches are typically used to compute the coefficients of this transformation: their calibration from ground reference points (GRPs) with known image and real-world coordinates (“implicit calibration”) or their calculation from the values of the intrinsic (focal length, sensor size) and extrinsic (position, angles) parameters of the camera (“explicit calibration”). In this paper, we develop a Bayesian method which makes it possible to combine the implicit and explicit approaches in a probabilistic framework. The Bayesian approach can be used from situations suitable for the implicit approach (plenty of GRPs) to situations propitious to the explicit approach (well-known camera parameters). The method is illustrated using synthetic views of a typical streamgauging scene with known true values of the parameters and GRP coordinates. We show that combining observational and prior information is generally beneficial to get precise estimates. Further tests carried out with a real scene of the Arc River at Randens, France, in flood conditions illustrate the impact of the number, uncertainty and spatial distribution of GRPs on the final uncertainty of flow velocity and discharge.  相似文献   

5.
微型土压力传感器标定方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
离心模型试验常用微型土压力传感器测量地基或土与结构接触边界上的土压力。传感器使用之前应进行标定。传统的液标或气标方法不能准确反映传感器埋置过程对土体的扰动或传感器周围人为土拱边界条件形成,导致测试结果不甚理想。故针对试验条件,设计制作一套标定微型土压力传感器的方法和装置,以水、粉质黏土和福建标准砂为标定介质,考虑有无刚性靠背两种工作状态对多个传感器进行室内标定,得到标定系数。结果表明:水标未出现卸载滞后,砂标和土标均出现卸载滞后,且表现为非线性;引入滞后比R评价微型土压力传感器的滞后性,认为标定介质和传感器类型是影响滞后比的两个主要因素;传感器自身材料特性和几何特性、地基土的制备和传感器放置、加载预压和加卸载循环等对土体密实度、土体强度等的改变、工作介质和状态等对标定结果有影响。建议尽量模拟试验工作介质和工作状态,逐个标定传感器,以得到更准确的土压力测量值。  相似文献   

6.
Examples of Holocene-historical volcanism in the territory of Armenia and adjacent areas of Eastern Anatolia and Western Iran are discussed. Holocene-historical activity is proved for the volcanoes of Tskhouk–Karckar, Porak, Vaiyots-Sar, Smbatassar and Ararat. Based on the analysis of remote sensing data, field work, and historical and archeological information, it is demonstrated that there was a considerable number of cases of volcanic activity in Armenia and adjacent regions of Turkey, Syria and Iran during the historical period. The Holocene volcanic centers are situated within pull-apart basin structures and controlled by active faults. Situated in an area prone to many types of natural hazards, Armenia and adjacent countries face high natural risk. The evidence presented shows that volcanic hazard also contributes to the natural risk for these countries.  相似文献   

7.
 Field-based studies of surficial volcanic deposits are commonly complicated by a combination of poor exposure and rapid lateral variations controlled by unknown paleotopography. The potential of ground-penetrating radar (GPR) as an aid to volcanological studies is shown using data collected from traverses over four well-exposed, Recent volcanic deposits in western Canada. The deposits comprise a pumice airfall deposit (3–4 m thick), a basalt lava flow (3–6 m thick), a pyroclastic flow deposit (15 m thick), and an internally stratified pumice talus deposit (60 m thick). Results show that GPR is effective in delineating major stratigraphic contacts and hence can be used to map unexposed deposits. Different volcanic deposits also exhibit different radar stratigraphic character, suggesting that deposit type may be determined from radar images. In addition, large blocks within the pyroclastic deposits are detected as distinctive point diffractor patterns in the profiles, showing that the technique has potential for providing important grain-size information in coarse poorly sorted deposits. Laboratory measurements of dielectric constant (K') are reported for samples of the main rock types and are compared with values of K' for the bulk deposit as inferred from the field data. The laboratory values differ significantly from the "field" values of K'; these results suggest that the effectiveness of GPR at any site can be substantially improved by initial calibration of well-exposed locations. Received: 10 May 1996 / Accepted: 27 December 1996  相似文献   

8.
Digital images from hand-held cameras are increasingly being acquired for scientific purposes, particularly where non-contact measurement is required. However, they frequently consist of oblique views with significant camera-to-object depth variations and occlusions that complicate quantitative analyses. Here, we report the use of oblique photogrammetric techniques to determine ground-based thermal camera orientations (position and pointing direction), and to generate scene information for lava flows at Mount Etna, Sicily. Multiple images from a consumer grade digital SLR camera are used to construct a topographic model and reference associated ground-based thermal imagery. We present data collected during the 2004–2005 eruption and use the derived surface model to apply viewing distance corrections (to account for atmospheric attenuation) to the thermal images on a pixel-by-pixel basis. For viewing distances of ~100 to 400 m, the corrections result in systematic changes in emissive power of up to ±3% with respect to values calculated assuming a uniform average viewing distance across an image.  相似文献   

9.
双平板多功能核医学成像系统是一套既能够进行正电子发射断层扫描成像(PET)又可以进行单光子发射成像(γ相机)的"一机多用"设备。该系统采用平行双平板结构,通过可移动式准直器组合实现PET模式和γ相机模式的切换。鉴于这一工作模式需求,同时考虑到设备装配过程中的机械精度等因素,系统的几何结构参数校准及与成像过程配套的几何校正变得尤为重要。本文基于双平板多功能核医学成像系统,研究系统几何偏移对图像质量的影响,并对这些误差因素进行参数化表征,建立一套几何参数校正方法。基于蒙特卡洛模拟数据的验证表明,该方法有效可行,流程简洁。   相似文献   

10.
The combination of structure-from-motion with multi-view stereo (SfM-MVS) photogrammetry has become an increasingly popular method for the monitoring and three-dimensional (3D) reconstruction of coastal environments. Climate change is driving the potential for increased coastal landward retreat meaning geomorphological monitoring using methods such as SfM-MVS has become essential for detecting and tracking impacts. SfM-MVS has been well-researched with a variety of platforms and spatial and temporal resolutions using mainly rectilinear digital cameras in coastal settings. However, there has been no assessment of the potential of fixed multi-camera arrays to monitor landward retreat or on the significance of camera placement in relation to the scene. This study presents an innovative method of image acquisition using a purpose-built camera grid and GoPro© action camera to evaluate the combined effects of camera height, obliqueness and overlap at a site of known landward retreat. This approach examines the effect of camera placement on scene reconstruction to aid the design of a multi-camera array. SfM-MVS dense point clouds display millimetre accuracy when compared to equivalent terrestrial laser scans and strong image network geometry with internal precision estimates of < 3 mm. Comparable point cloud reconstruction can be achieved with a small number of images stationed in appropriate positions. Initial results show as few as five images positioned at a cliff to camera ratio of 3:4.18 and camera obliqueness of 40° can provide reconstruction in the range of millimetres (mean error of 4.79 mm). These findings illustrate the importance of camera placement when using multiple cameras and aid the design of a low-cost, fixed multi-camera array for use at sites of small-scale landward retreat. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

11.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   

12.
Experiments on rift zone evolution in unstable volcanic edifices   总被引:1,自引:0,他引:1  
Large ocean island volcanoes frequently develop productive rift zones located close to unstable flanks and sites of older major sector collapses. Flank deformation is often caused by slip along a décollement within or underneath the volcanic edifice. We studied how such a stressed volcanic flank may bias the rift zone development. The influence of basal lubrication and lateral flank creep on rift development and rift migration is still poorly constrained by field evidence; here our analog experiments provide new insights. We injected colored water into gelatin cones and found systematic orientations of hydro-fractures (dikes) propagating through the cones. At the base of the cone, diverse friction conditions were simulated. By variation of the basal creep conditions we modeled radial dike swarms, collinear rift zones and three-armed rift systems. It is illustrated that a single outward-creeping flank is sufficient to modify the entire rift architecture of a volcano. The experiments highlight the general unsteadiness of dike swarms and that the distribution and alteration of weak substratum may become a major player in shaping a volcano’s architecture.  相似文献   

13.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

14.
3S技术在国外火山减灾中的应用   总被引:2,自引:0,他引:2  
在参考大量国内外有关应用遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)技术进行火山监测,预测及火山灾害评估等火山减灾文献的基础上,总结了国外火山减灾工作研究的现状和进展,提出火山减灾应大量应用遥感、地理信息系统和全球定位系统等高新技术,且指出未来山减灾工作的方向是综合、系统、实时、动态、立体化和可持续减灾。  相似文献   

15.
Three techniques of digital photogrammetry have been applied successfully to laboratory analogue models to study surface displacements caused by various volcano deformation types. Firstly, side-perspective videos are used to differentiate profile displacements between cryptodome intrusion models and models deforming by ductile inner-core viscous flow. Both models show similar morphologic features including a bulged flank and an asymmetric upper graben. However, differences in displacement trajectories of the bulge crest reflect upward intrusion push contrasting with essentially downward displacement vectors of weak core models. The other two techniques use vertical views correlated automatically either as time-sequence monoscopic views or as coeval stereoscopic pairs. This exploits to a maximum the method’s potential by imaging surface displacements over the whole model. Successive monoscopic photograms, because they suffer only moderate numerical processing for topographic effect removal, can detect very small displacements occurring early in deformation processes. As illustrated by analysis of intrusion models, the monoscopic method allows prediction of fault locations and main displacement locations. It can also anticipate the principal strain directions, and separate different deformation stages. On the other hand, the stereo-photogrammetry technique, although more complicated, provides topography and volume changes, as well as pictures of surface displacements in three dimensions. Results are presented for the spreading of volcano models on a ductile substratum and viscous cored cones. We have found digital photogrammetry to be a useful tool for analogue modelling, because it provides quantitative data on surface displacements, including movement invisible to the eye, as well as topographic changes. It is a good method for investigating and comparing different deformation mechanisms. It is especially useful for interpretation of displacement patterns obtained from monitoring of natural active volcanoes. In fact, results of the methods used in the laboratory can be directly compared with field data from geodetic or photogrammetric surveys, as at Mount St. Helens in 1980.  相似文献   

16.
Recent advances are made in earth surface reconstruction with high spatial resolution due to SfM photogrammetry. High flexibility of data acquisition and high potential of process automation allows for a significant increase of the temporal resolution, as well, which is especially interesting to assess geomorphic changes. Two case studies are presented where 4D reconstruction is performed to study soil surface changes at 15 seconds intervals: (a) a thunderstorm event is captured at field scale and (b) a rainfall simulation is observed at plot scale. A workflow is introduced for automatic data acquisition and processing including the following approach: data collection, camera calibration and subsequent image correction, template matching to automatically identify ground control points in each image to account for camera movements, 3D reconstruction of each acquisition interval, and finally applying temporal filtering to the resulting surface change models to correct random noise and to increase the reliability of the measurement of signals of change with low intensity. Results reveal surface change detection with cm‐ to mm‐accuracy. Significant soil changes are measured during the events. Ripple and pool sequences become obvious in both case studies. Additionally, roughness changes and hydrostatic effects are apparent along the temporal domain at the plot scale. 4D monitoring with time‐lapse SfM photogrammetry enables new insights into geomorphic processes due to a significant increase of temporal resolution. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

18.
Shallow volcano-tectonic (VT) earthquakes recorded at the Kuchinoerabujima island volcano in southwest Japan are analyzed in order to clarify the role of hydrothermal activity in the development of volcanic seismicity. From analysis of shallow VT earthquakes in 2006, two specific episodes of elevated seismicity are observed in April and November 2006. The VT earthquakes have hypocenters at depths of 0–0.4 km beneath the summit crater, and normal fault focal mechanisms with WNW–ESE extension consistent with the tensional stress field indicated by the alignment of craters and fissures. Although the hypocenters and focal mechanisms are found to be largely invariant during these episodes, the corner frequencies of the VT earthquakes underwent a pronounced increase and decrease accompanying the changes in seismicity rates. The corner frequencies increased to 20–25 Hz approximately one month prior to the onset of elevated seismicity, and then decreased to 10–15 Hz in the period of peak seismicity. The rupture length also decreased at the onset of seismicity, thereafter increasing as the seismicity continued. The peak seismicity in terms of the daily number of VT events was accompanied by inflation around the crater, suggestive of a pressure increase in the volcanic system. It is inferred that the increase in shallow VT seismicity and rupture length is related to the development of a fractured zone. The pressure increase in the volcanic system is attributed to the intrusion of hydrothermal fluids, which is supported by an observed increase in fumarolic temperature and activity. The preceding monochromatic events are thus considered to be generated by the effect of fluid-filled cracks. The shortening of rupture length is then inferred to be related to the closing of non-fluid-filled cracks in the fracture zone under the increasing pressure field, leading to a transition from monochromatic events to low-frequency and shallow VT seismicity.  相似文献   

19.
Tan  Xingyan  Zhang  Lanhui  He  Chansheng  Zhu  Yuzuo  Han  Zhibo  Li  Xuliang 《中国科学:地球科学(英文版)》2020,63(11):1730-1744

Accurate monitoring of soil moisture is crucial in hydrological and ecological studies. Cosmic-ray neutron sensors (CRNS) measure area-average soil moisture at field scale, filling a spatial scale gap between in-situ observations and remote sensing measurements. However, its applicability has not been assessed in the agricultural-pastoral ecotone, a data scarce semi-arid and arid region in Northwest China (APENC). In this study, we calibrated and assessed the CRNS (the standard N0 method) estimates of soil moisture. Results show that Pearson correlation coefficient, RP, and the root mean square error (RMSE) between the CRNS soil moisture and the gravimetric soil moisture are 0.904 and less than 0.016 m3 m−3, respectively, indicating that the CRNS is able to estimate the area-average soil moisture well at our study site. Compared with the in-situ sensor network measurements (ECH2O sensors), the CRNS is more sensitive to the changes in moisture in its footprint, which overestimates and underestimates the soil moisture under precipitation and dry conditions, respectively. The three shape parameters a0, a1, a2 in the standard calibration equation (N0 method) are not well suited to the study area. The calibrated parameters improved the accuracy of the CRNS soil moisture estimates. Due to the lack of low gravimetric soil moisture data, performance of the calibrated N0 function is still poor in the extremely dry conditions. Moreover, aboveground biomass including vegetation biomass, canopy interception and widely developed biological soil crusts adds to the uncertainty of the CRNS soil moisture estimates. Such biomass impacts need to be taken into consideration to further improve the accuracy of soil moisture estimation by the CRNS in the data scarce areas such as agricultural-pastoral ecotone in Northwest China.

  相似文献   

20.
We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125?mm and depth 250?mm from a distance of 2?m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2?mm, 1?mm and 0.04?s, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号