首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flux parameters, zero-plane displancement height and roughness length of a forest canopy are determined taking into consideration a transition layer and atmospheric diabatic influences. The present study, unlike previous studies by DeBruin and Moore (1985) and Lo (1990) that accounted for the velocity profile alone, make use of information from both wind and temperature profiles in formulating the governing equations. However, only the top level measurement is assumed to be within the logarithmic regime. In addition to the mass conservation principle (e.g., Lo, 1990; DeBruin and Moore, 1985), an analytic relationship between the Monin-Obukhov length and the bulk Richardson number is employed as the closure equation for the governing system.The present method is applied to profile measurements taken at Camp Borden (den Hartog and Neumann, 1984) in and above a forest canopy with mean crown height of about 18.5 m. Profile data under neutral or near-neutral conditions yieldedd=12.69 m andz 0=0.97 m, which are realistic values. In general,z 0 increases slightly with increasing wind yet remains relatively constant with respect to small variation of stabilities. On the other hand, increases of wind speed reduced values of displacement height,d, by as much as 50%. The influence, if any, of stability ond, however, is not clear from the results of the present study. The validity of using profile data of limited height is also carefully examined. At least for neutral or near-neutral stabilities, the present method can yield realistic results even though the profile heights are substantially below the transition layer height suggested by Garratt (1978).  相似文献   

2.
Summary In addition to global solar radiationE g , the hourly diffuse componentE d incident on a horizontal surface has been measured from February 1993 to January 1995 at a meteorological station in tropical West Africa. The measured diffuse solar irradiance data was corrected for shadow band effects. The monthly mean diurnal variations of diffuse solar irradiance obtained for identical months in the two years have been compared and found to be generally consistent. The corresponding monthly mean hourly values ofE d for identical months in 1993 and 1994 agreed to within 9% while yielding correlation coefficients greater than 0.960. In addition, the monthly mean daily totals ofE d for identical months were found to agree mostly to within 6% and showed virtually the same annual variations in both years. The monthly mean daily total values of diffuse solar radiation for most months in the two years ranged between 7.94 MJm–2d–1 and 10.50 MJm–2d–1. The monthly mean of daily hourly maximum values ofE d obtained for identical months in the two years have been discussed in relation to the dominant atmospheric conditions during these months. The results been presented here have been compared with those of some investigators within and outside the Africa region.With 8 Figures  相似文献   

3.
Summary Evaporation rates determined by energy balance and bulk transfer equations and confirmed with soil moisture sampling was regressed against average daytime temperature, vapour pressure deficit and wind speed over several chinook events between 1986 and 1988. The equationE = 0.45 exp (0.35 + 0.025 — 0.133 [e *e]) yielded reasonable estimates of evaporation with surface soil moisture between saturation and near wilting point.E is evaporation in mmd –1,T, u ande * ande are temperature (°C), wind speed (ms–1), saturation vapour pressure and vapour pressure (mb) respectively. The overbar denotes daytime average.With 8 Figures  相似文献   

4.
Summary The isentropic vertical coordinate model developed at UCLA is briefly reviewed. The review includes an outline of the approach used to overcome technical difficulties in handling model layers with small mass.The model's performance is demonstrated by simulating the evolution of a middle-latitude baroclinic disturbance. During the evolution of the disturbance, sharp frontal zones are generated in the upper and middle troposphere with realistic tropopause folding. The extent to which different dynamical processes contribute to frontogenesis is analyzed.While the model successfully simulates frontogenesis in the upper and middle troposphere, it has a difficulty in simulating surface fronts. The difficulty arises due to the lack of degrees of freedom in surface temperatures since an isentropic vertical coordinate model requires a large number ofvertical layers to obtain a highhorizontal resolution at the lower boundary. This suggests the potential of a hybrid vertical coordinate, which approaches at upper levels and at lower levels.With 12 Figures  相似文献   

5.
A set of semi-continuous measurements of temperature, wind and moisture gradients as well as of net radiation and ground heat flux covering a period of about one and a half years has been analysed to give a corresponding set of complete surface energy balance data on an hourly basis. An analysis of the evaporation data so obtained is given.It is shown that surface resistance r S exhibits a diurnal trend: values are smallest (ca. 150 s m-1) a few hours before noon and increase to as much as 800 s m-1 towards dusk. The minimum values tend to be higher during dry periods when the soil moisture is low. There is also some indication that r S decreases rapidly soon after rainfall.An exponential relation is found between the fraction of available energy used as evaporative flux, , and r S for values of r I/rS <0.70, where r I is the climatological resistance. On the other hand, the ratio of r I to r S is linearly correlated with , implying that an equilibrium state is established between the grass surface and the atmosphere, at least from mid-morning to mid-afternoon when the leaves are dry. Near-noon values calculated by Stewart and Thom for Thetford Forest also follow a linear trend.The above two regression results (In (r S) versus r I/rS versus ) are combined to obtain an empirical relation of the form r I=m exp (a-b) which is used to estimate evaporative flux. The estimates are found to be within 20% of calculated values.Guest Scientist from Department of Physics, University of Cape Coast, Cape Coast, Ghana.  相似文献   

6.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

7.
Summary Frontogenesis is frequently described by theQ-vector (Hoskins et al., 1978), a term being composed of several derivatives of basic meteorological parameters and their products. Its distribution and especially the H ·Q-fields are highly important to estimate frontogenesis and cross frontal circulation. Although theQ-vector (Hoskins et al., 1978) allows an easier assessment of the vertical wind forcing than the original omega equation of the quasi-geostrophic theory, it is still difficul to imagine the three-dimensional (3-d) spatial distribution ofQ and H ·Q even for standard atmospheric fields. Thus there is a need to shed more light in theQ and H ·Q-fields for special synoptic situations.This is done here by constructing analytical 3-d geostrophically balanced wind-and temperature fields, for which theQ-forcing (Qformed with the geostrophic wind) can easily be computed and presented. Three examples (see Sections 3 to 5) are discussed yielding typical and realistic (compared to known pattern) 3-d forcing distributions ofQ and H ·Q. Within the simple analytical scheme used here their origin can casily be understood. These fields of a 2000×2000 km2 horizontal domain ranging up to 250 hPa are: A modified Bergeron deformation field containing a cold front (case I a) and a warm front (case I b); an upper tropospheric jet including a jet-parallel transition zone between warm and cold air (case II); and a circular low pressure circulation pattern with two fronts (case III).The paper presents these 3-d fields with the advantage that the analytical method is not affected by any kind of limited numerical resolution. It also shows how these fields degenerate with decreasing resolution if the analytical data are used in descrete form. This simulates working with discrete numerical data and demonstrates how narrow frontal zones of structure elements ofQ and H ·Q considerably smooth out with increasing grid distances.With 17 Figures  相似文献   

8.
In studies of turbulence, tower data are used to measure vertical fluxes of momentum and heat generated by correlations in the fluctuating fields. Similar time averages of wu and w may be computed for an interval of wave activity observed at an instrumented tower. However, it is shown that such measurements do not necessarily correspond to the conventional Reynold's stresses or vertical heat fluxes. And waves can appear to have non-zero and even countergradient fluxes when proper averages show no fluxes at all.These spurious fluxes are generated by the method of analysis, a Fourier series performed on a finite time interval. Any background disturbance that is not strictly confined to the interval will generate a spurious wave spectrum. In particular, long-period waves will generate terms that interfere with the true high frequency waves to give false wave fluxes. The theoretical findings of this paper provide a ready explanation of tower data that would otherwise appear to conflict with conventional wave theory.  相似文献   

9.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

10.
An analysis was performed of experimental data obtained at fixed ship stations during AMTEX 1974 and 1975. This allowed the calculation of the bulk transfer relationships for water vapor and sensible heat in the atmospheric boundary layer for different interpretations of the thickness scale of the boundary layer. It was found that scaling based on the observed thickness, which herein was taken as the height of the lowest value in the potential temperature profile under unstable conditions, produces least scatter in the calculations. The results obtained for the similarity function c( i ) of the bulk heat transfer coefficient are in good agreement with the results of previous studies. As observed earlier (Brutsaert and Mawdsley, 1976; Mawdsley and Brutsaert, 1977), under unstable conditions the similarity functions D() of the bulk water vapor transfer coefficient are smaller than the corresponding C() functions for sensible heat. In the case of inversion height scaling, the results can be represented by d( i ) = 0.65 c( i ).  相似文献   

11.
Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board Akademik Korolev in the central equatorial and southern Arabian Sea region. The net heat exchange (R n ) is found to be about 20 W m–2 for a small area (0–4° N; 55–60° E), 50% less than the dimatological value. The mean value of net radiation (140 W m–2) is less than the climatological value, which was due to higher cloud amount. The higher SST enhanced both the latent and sensible heat fluxes.The mean atmospheric circulation obtained from the upper air data is quite convincing. The mean exchange coefficient (C e ) estimated from the moisture budget is about 1.0 × 10–3 for a wind speed of 4 m s–1. This value is slightly lower than that obtained by the usual methods.National Institute of Oceanography, RC, 52-Kirlampudi layout, Visakhapatnam — 530 023.India Meteorological Department, Gauhati.  相似文献   

12.
Past work on analyzing ground-source diffusion data in terms of surface-layer similarity theory is reviewed; these analyses assume that z /L orh/L is a function of u * x/L (where h = Q/ dy). It is argued that an alternative scaling, h */L versus x/L, is nearly as universal in that it is very weakly influenced by surface roughness, except for a modest influence in the free convective case (h * = Q/u * dy); the advantage of this scaling is that it eliminates the need to reassess as vertical diffusion progresses. The Prairie Grass data set is adjusted for the difference in source and sampling heights, and is plotted with this scaling. Simple analytic equations are suggested that fit the resultant data plots for stable and unstable conditions, and suggestions are made towards practical application of these results.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

13.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

14.
By using PSU/NCAR MM5 mesoscale model,a 60-h simulation is performed to reproduce a frontal cyclogenesis over the Western Atlantic Ocean during March 13-15 1992.The model reproduces well the genesis,track and intensity of the cyclone,its associated thermal structure as well as its surface circulation.The major cyclone (M) deepens 45 hPa in the 60-h simulation and 12 hPa in 6 hours from 36 h to 42 h (model time) and 27 hPa in 24 hours from 36 h to 60 h (model time).Cross-section and isentropic analysis tell us that the cyclogenesis is in very close relation with slantwise isentropic surfaces;the cyclone is always superposed on the core of neutral convective stability with nearly vertical isentropic surfaces,which coincides with what the theory of Slantwise Vorticity Development (SVD) says.Beginning with the theory of SVD,the development and propagation of the oceanic frontal cyclone are studied by using high-resolution model output in the context of slantwise isentropic surfaces.The results show that the frontal cyclone deepens rapidly by the interaction with the large-scale environment after occurring over the ocean with weak static stability;and the theory of SVD can well interpret the development and propagation closely related with slantwise isentropic surfaces,The downstream slantwise up-sliding movement along canting isentropic surfaces makes vorticities develop (USVD) under favorable condition (CD<0,where CD is SVD index),and results in the moving and development of the cyclone.  相似文献   

15.
During spring and autumn, many lakes in temperate latitudes experience intensive convective mixing in the vertical, which leads to almost isothermal conditions with depth. Thus the regime of turbulence appears to be similar with that characteristic of convective boundary layers in the atmosphere. In the present paper a simple analytical approach, based on boundary-layer theory, is applied to convective conditions in lakes. The aims of the paper are firstly to analyze in detail the temperature distribution during these periods, and secondly to investigate the current system, created by the horizontal temperature gradient and wind action. For these purposes, simple analytical solutions for the current velocities are derived under the assumption of depth-constant temperatures. The density-induced current velocities are shown to be small, in the order of a few mm/sec. The analytical model of wind-driven currents is compared with field data. The solution is in good qualitative agreement with observed current velocities under the condition that the wind field is steady for a relatively long time and that residual effects from former wind events are negligible.The effect of the current system on an approximately depth-constant temperature distribution is then checked by using the obtained current velocity fields in the heat transfer equation and deriving an analytical solution for the corrected temperature field. These temperature corrections are shown to be small, which indicates that it is reasonable to describe the temperature distribution with vertical isotherms.Notation T temperature - t time - x, y, z cartesian coordinates - molecular viscosity - h , v horizontal and vertical turbulent viscosity - K h ,K v horizontal and vertical turbulent conductivity - Q heat flux through the water surface - D depth - u, v, w average current velocity components inx, y andz directions - f Coriolis parameter - p pressure - density - g gravity acceleration - a constant in the freshwater state equation - h s deviation from the average water surface elevation - L *,H * length and depth scale - U *,W * horizontal and vertical velocity scale - T temperature difference scale - bottom slope - u * friction velocity at the water surface - von Karman constant - L Monin-Obukhov length scale - buoyancy parameter - l turbulence length scale - C 1,C 2,C 3 dimensionless constants in the expressions for the vertical turbulent viscosity - , dimensionless vertical coordinate and dimensionless local depth - angle between surface stress direction andx-axis - T bx ,T by bottom stress components - c bottom drag coefficient  相似文献   

16.
An attempt is made to construct a model, coupling land surface and atmospheric processes in the planetary boundary layer (PBL). A grassland strip in a semi-desert (hereinafter called desert) is presupposed, so as to simulate the case of heterogeneous vegetation cover.Modeling results indicate that every term in the equation of the surface energy balance changes as the air flows over the grassland. The striking contrast of water and energy conditions between the grassland and the desert means that the air over the grassland is cooler and wetter than that over the desert. Consequently, in the heating and dynamic forcing of the air by the underlying surface, heterogeneities arise and are then transferred upward by the turbulent motions. Horizontal differences thus develop in the PBL, resulting in a local circulation. Meanwhile, the horizontal differences affect the free atmosphere through vertical motion at the top of the PBL.List of symbols d 1,d 2,d 3 depths of surface, middle and lower layers of soil - T c ,T 1,T 2,T 3 temperatures of canopy, surface, middle and lower layers of soil - R nc net radiation of canopy layer - c shielding factor of vegetation - Ew, Etc evaporation from wet fraction of foliage and transpiration from dry fraction of foliage - Et 1,Et 2 transpiration of foliage water absorbed by the root in the upper and lower soil, respectively - H c sensible heat of canopy - P c ,D c precipitation rate and drainage of canopy - C s ,C c ,C w heat capacity of soil, canopy and water - w , s density of water and air near the surface - D hydraulic permeability of soil - s saturated value of the ratio of volumetric soil moisture - S g , g solar radiation and surface reflection - H g ,R L g turbulent heat flux and long wave radiation of surface - P g ,E g precipitation rate and evaporation of soil surface - K s soil thermal diffusivity - K (m),K (H),K (q) eddy coefficients of momentum, heat and moisture - u, v, w components of wind speed in three directions - air potential temperature - e turbulent kinetic energy - p atmospheric pressure - C p specific heat of air under constant pressure - R d gas constant - u * friction velocity - * feature temperature - h height of the PBL - f Coriolis parameter - L 0 Monin-Obukhov length - latent heat of vaporization - q specific humidity - M c ,M cm interception water storage of canopy and its maximum - 0 Exner number of largescale background field - perturbation Exner number - u g ,v g components of the geostrophic wind speed Sponsored by the National Natural Science Foundation of China.  相似文献   

17.
Mean spectra of vertical wind velocity, temperature, and humidity and co-spectra of vertical turbulent heat and moisture fluxes are reported, normalized in terms of the similarity theory of Monin-Obukhov. The measurements were made in April 1967 at light-house Alte Weser at a height of 30 m above the German Bight. Ten spectra measured under conditions of moderate instability (z/L –0.08) have been used for the evaluation of a mean spectral curve. The humidity fluctuations have been determined from simultaneous turbulence measurements of temperature and radiorefractive-index, which were obtained by a microwave refractometer.Similar to the BOMEX measurements discussed by Phelps and Pond (1971) our results also show a dissimilarity between the fluctuations of temperature and humidity. Accordingly, in the range of lower and higher natural frequencies, significant differences were present between the co-spectra of the vertical heat and moisture fluxes, although the mean peak frequencies of both the fluxes nearly correspond to that of the mean vertical wind-velocity spectrum (f m 0.35).  相似文献   

18.
A numerical investigation of wind speed effects on lake-effect storms   总被引:2,自引:0,他引:2  
Observations of lake-effect storms that occur over the Great Lakes region during late autumn and winter indicate a high sensitivity to ambient wind speed and direction. In this paper, a two-dimensional version of the Penn State University/National Center for Atmospheric Research (PSU/NCAR) model is used to investigate the wind speed effects on lake-effect snowstorms that occur over the Great Lakes region.Theoretical initial conditions for stability, relative humidity, wind velocity, and lake/land temperature distribution are specified. Nine different experiments are performed using wind speeds ofU=0, 2, 4,..., 16 m s–1. The perturbation wind, temperature, and moisture fields for each experiment after 36 h of simulation are compared.It is determined that moderate (4–6 m s–1) wind speeds result in maximum precipitation (snowfall) on the lee shore of the model lake. Weak wind speeds (0U<4 m s–1) yield significantly higher snowfall amounts over the lake along with a spatially concentrated and intense response. Strong wind speeds (6<U16 m s–1), yield very little, if any, significant snowfall, although significant increases in cloudiness, temperature, and perturbation wind speed occur hundreds of kilometers downwind from the lake.  相似文献   

19.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures  相似文献   

20.
In the summer of 1988/89 flights were carried out in the Coorong coastal area of South Australia to investigate sea-breeze fronts. The flights yielded data sets of the structure of the fronts in the cross-frontal direction with a spatial resolution of approximately 3 m. The study is focused on the budgets of sensible and latent heat in the vicinity of the front and on frontogenesis/frontolysis processes which are closely related to budget considerations.The frontogenesis relationships and the budgets were established on a 2 km length scale by low-pass filtering of the space series. As the wind components were measured with high accuracy, all processes which determine frontogenesis could be evaluated and are displayed in x,z-cross-sections: these are the confluence, shear and diabatic effects, all of which play a role in q/x-, q/z-, /x- as well as /z-frontogenesis. A detailed analysis is given for two different states of frontal development. The presented results shed much light on the governing physical processes in the frontal region with strong emphasis on the effects of confluence-generated updrafts, on shear instabilities causing bulges and clefts in the frontal surface as well as producing the elevated frontal head, and on processes related to differential heating and moistening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号