首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

2.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

3.
Five mafic lava flows located on the southern flank of Mount Baker are among the most primitive in the volcanic field. A comprehensive dataset of whole rock and mineral chemistry reveals the diversity of these mafic lavas that come from distinct sources and have been variably affected by ascent through the crust. Disequilibrium textures present in all of the lavas indicate that crustal processes have affected the magmas. Despite this evidence, mantle source characteristics have been retained and three primitive endmember lava types are represented. These include (1) modified low-K tholeiitic basalt (LKOT-like), (2) typical calc-alkaline (CA) lavas, and (3) high-Mg basaltic andesite and andesite (HMBA and HMA). The Type 1 endmember, the basalt of Park Butte (49.3–50.3 wt% SiO2, Mg# 64–65), has major element chemistry similar to LKOT found elsewhere in the Cascades. Park Butte also has the lowest overall abundances of trace elements (with the exception of the HREE), indicating it is either derived from the most depleted mantle source or has undergone the largest degree of partial melting. The Type 2 endmember is represented by the basalts of Lake Shannon (50.7–52.6 wt% SiO2, Mg# 58–62) and Sulphur Creek (51.2–54.6 wt% SiO2, Mg# 56–57). These two lavas are comparable to calc-alkaline rocks found in arcs worldwide and have similar trace element patterns; however, they differ from each other in abundances of REE, indicating variation in degree of partial melting or fractionation. The Type 3 endmember is represented by the HMBA of Tarn Plateau (51.8–54.0 wt% SiO2, Mg# 68–70) and the HMA of Glacier Creek (58.3–58.7 wt% SiO2, Mg# 63–64). The strongly depleted HREE nature of these Type 3 units and their decreasing Mg# with increasing SiO2 suggests fractionation from a high-Mg basaltic parent derived from a source with residual garnet. Another basaltic andesite unit, Cathedral Crag (52.2–52.6 wt% SiO2, Mg# 55–58), is an Mg-poor differentiate of the Type 3 endmember. The calc-alkaline lavas are least enriched in a subduction component (lowest H2O, Sr/PN, and Ba/Nb), the LKOT-like lavas are intermediate (moderate Sr/PN and Ba/Nb), and the HMBA are most enriched (highest H2O, Sr/PN and Ba/Nb). The generation of the LKOT-like and calc-alkaline lavas can be successfully modeled by partial melting of a spinel lherzolite with variability in composition of slab flux and/or mantle source depletion. The HMBA lavas can be successfully modeled by partial melting of a garnet lherzolite with slab flux compositionally similar to the other lava types, or less likely by partial melting of a spinel lherzolite with a distinctly different, HREE-depleted slab flux.  相似文献   

4.
The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lower-most formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the north-western outcrops. The mildly enriched high field strength element contents of the samples with TiO2 > 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.  相似文献   

5.
Eighteen flows from a basal stratigraphic sequence on the Aleutian Island of Atka were analyzed for major elements, trace elements and initial 87Sr/86Sr ratios. Petrographically, these lavas contain abundant plagioclase (24–45%) and lesser amounts of olivine (<7%), magnetite and clinopyroxene phenocrysts. Compositionally, the lavas are high-alumina (20wt%) basalts (48–51 wt% SiO2) with low TiO2 (<1%) and MgO (<5%). Within the section, compositional variations for all major elements are quite small. While MgO content correlates with olivine phenocryst contents, no such relationship exists between the other oxides and phenocryst content. These lavas are characterized by 8–10 ppm Rb, high Sr (610–669 ppm), 308–348 ppm Ba and very constant Zr (23–29 ppm) and Sc (23–29 ppm) abundances. Ni and Cr display extremely large compositional ranges, 12–118 ppm and 12–213 ppm, respectively. No correlation exists between trace element concentrations and phenocryst contents. Strontium isotopic ratios show a small but significant range (0.70314–0.70345) and are slightly elevated with respect to typical MORB. No systematic correlation between stratigraphic position and petrography or geochemistry is evident. REE abundances measured on six samples are LREE enriched ((La/ Yb)N = 2.20–2.81) and display similar chondrite normalized patterns. One sample has a slight positive Eu anomaly but the other lavas do not. Compared to other Aleutian basalts of similar silica content, these lavas are less LREE enriched and have lower overall abundances. The geochemical characteristics of these basalts suggest they represent true liquid compositions despite their highly porphyritic nature. Published phase relations indicate fractionation of a more MgO-rich magma could not have produced these lavas. The high Al2O3 and low MgO and compatible element abundances suggest a predominantly oceanic crustal source for parental high-alumina basalts.  相似文献   

6.
Puyehue Volcano (40?5?S) in the southern volcanic zone (33?–46?)of the Andes is a largely basaltic stratovolcano constructedon a highly eroded, dominantly andesitic volcanic center. Duringgrowth of Puyehue Volcano there was a trend from basaltic tomore siliceous lavas, and the most recent eruptions (1921–22,1960) are Cordon Caulle rhyodacites and rhyolites erupted fromfissures northwest of the volcano. These basaltic through rhyoliticlavas define a medium-K2O suite of tholeiitic affinity withtrace element and Pb-isotopic signatures typical of volcanicrocks associated with subduction zones. Most of the evolved lavas, ranging from andesite to rhyolite,formed by low to moderate pressure ( 5 kb) fractional crystallizationof a plagioclase-dominated anhydrous assemblage. Magma mixingproduced aphyric basaltic andesites with anomalously high incompatibleelement contents and latestage andesites with disequilibriumphenocryst assemblages. The age progression from abundant basaltto younger, less voluminous, more silicic lavas reflects increasinglygreater degrees of fractional crystallization which caused theapparent compositional gap between mixing end members to widen. There is no evidence in the silicic lavas for assimilation ofgeochemically distinctive continental crust. Puyehue basaltsare surprisingly more heterogeneous in 87Sr/86Sr (0?70378–0?70416)and incompatible element abundance ratios (e.g., La/Sm, Ba/Nb)than the more evolved lavas. This geochemical variability mayreflect subcrustal source heterogeneities or contamination bylower crust. The older basaltic andesites and andesites underlyingthe Puyehue edifice have Sr and Nd isotopic ratios and incompatibleelement abundance ratios within the range of Puyehue basalts.Apparently, similar sources and processes were involved in theirgenesis.  相似文献   

7.
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ.  相似文献   

8.
Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian–Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66–0.73 at intermediate SiO2 (54–58 wt%) with low CaO (<8.8%), CaO/Al2O3 (<0.54), and relatively high Na2O (>3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock ‘melts’, consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (<2.7 wt%) and K2O (<1.1 wt%) at similar Mg# (0.66–0.70). Olivine phenocrysts in basalts have in general, higher CaO and Mn/Fe and lower Ni and Ni/Mg at Fo88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984–1,143°C and 4–7 wt% H2O. For primitive basalts they are 1,149–1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with hotter peridotite in the over-lying mantle wedge. The strongly calc-alkaline igneous series at Shiveluch Volcano is interpreted to result from the emplacement and evolution of primitive andesitic magmas similar to those that are present in nearby monogenetic cones of the Shisheisky Complex.  相似文献   

9.
The lavas of Nisyros were erupted between about 0?2 m.y B.P.and 1422 A.D., and range in composition from basaltic andesiteto rhyodacite. Most were erupted prior to caldera collapse (exactdate unknown), and the post-caldera lavas are petrographically(presence of strongly resorbed phenocrysts) and chemically (lowerTiO2 K2O, P2O5, and LIL elements) distinct from the pre-calderalavas. The pre-caldera lavas do not form a continuous seriessince lavas with SiO2 contents between 60 and 66 wt.% are absent.Nevertheless, major element variations demonstrate that fractionalcrystalliz ation (involving removal of olivine, dinopyroxene,plagioclase, and Fe-Ti oxide from the basaltic andesites andandesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite,ilmenite, apatite, and zircon from the dacites and rhyodacites)played a major role in the evolution of the pre-caldera lavas.Several lines of evidence indicate that other processes werealso important in magma evolution: (1) Quantitative modelingof major element data shows that phenocryst phases of unlikelycomposi tion or unrealistic assemblages of phenocryst phasesare required to relate the dacites and rhyodacites to the basalticandesites and andesites; (2) The proportions of olivine andclinopyroxene required in quantitative models for the initialstages of evolution differ from those observed petrographicallyand this is not likely to reflect either differential ratesof crystal settling or the curvature of cotectics along whichliquids of basaltic andesite to andesite composition lie; (3)The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in therhyod.acites are too high for these lavas to be related to thedacites by fractional crystallization alone; and (4) 87Sr/86Srratios for the andesites and rhyodacites are higher than thosefor the basaltic andesites and dacites, respectively. It isshown that fractional crystallization was accompanied by assimilation,and that magma mixing played a minor role (if any) in the evolutionof the pre-caldera lavas. Trace element and isotopic data indicatethat the andesites evolved from the basaltic andesites by AFCinvolving average crust or upper crust, whereas the rhyodacitesevolved from the dacites by AFC involving lower crust. Additionalevidence for polybaric evolution is provided by the occurrenceof distinct Ab-rich cores of plagioclase phenocrysts in thedacites and rhyodacites, which record a period of high pressurecrystallization, and by the occurrence of both normal and reverse-zonedphenocrysts in the basaltic andesites and andesites. Furthermore,calculated pressures of crystallization are {small tilde}8 kbfor the dacites and rhyodacites and 3?5–4 kb for the basalticandesites and andesites. It is concluded that the dacites andrhyodacites evolved via AFC from basaltic andesites and andesiteslargely in chambers sited near the base of the crust whereasthe basaltic andesites and andesites mostly evolved in chamberssited at mid-crustal levels. Eruption from different chambersexplains the compositional gap in the chemistry of the pre-calderalavas since eruptive products represent a more or less randomsampling of residual liquids which separate (via filter pressing)from bodies of crystallizing magma at various depths. Magmamixing was important in the evolution of the post-caldera lavas,but geochemical data require that these magmas evolved fromparental magmas which were derived from a more refractory sourcethan the parental magmas to the pre-caldera lavas. *Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, The Netherlands  相似文献   

10.
The Saurashtra region in the northwestern Deccan continental flood basalt province (India) is notable for compositionally diverse volcano-plutonic complexes and abundant rhyolites and granophyres. A lava flow sequence of rhyolite-pitchstone-basaltic andesite is exposed in Osham Hill in western Saurashtra. The Osham silicic lavas are Ba-poor and with intermediate Zr contents compared to other Deccan rhyolites. The Osham silicic lavas are enriched in the light rare earth elements, and have εNd (t = 65 Ma) values between −3.1 and −6.5 and initial 87Sr/86Sr ratios of 0.70709-0.70927. The Osham basaltic andesites have initial εNd values between +2.2 and −1.3, and initial 87Sr/86Sr ratios of 0.70729-0.70887. Large-ion-lithophile element concentrations and Sr isotopic ratios may have been affected somewhat by weathering; notably, the Sr isotopic ratios of the silicic and mafic rocks overlap. However, the Nd isotopic data indicate that the silicic lavas are significantly more contaminated by continental lithosphere than the mafic lavas. We suggest that the Osham basaltic andesites were derived by olivine gabbro fractionation from low-Ti picritic rocks of the type found throughout Saurashtra. The isotopic compositions, and the similar Al2O3 contents of the Osham silicic and mafic lavas, rule out an origin of the silicic lavas by fractional crystallization of mafic liquids, with or without crustal assimilation. As previously proposed for some Icelandic rhyolites, and supported here by MELTS modelling, the Osham silicic lavas may have been derived by partial melting of hot mafic intrusions emplaced at various crustal depths, due to heating by repetitively injected basalts. The absence of mixing or mingling between the rhyolitic and basaltic andesite lavas of Osham Hill suggests that they reached the surface via separate pathways.  相似文献   

11.
Recent basaltic andesite lavas from Merapi volcano contain abundant,complexly zoned, plagioclase phenocrysts, analysed here fortheir petrographic textures, major element composition and Srisotope composition. Anorthite (An) content in individual crystalscan vary by as much as 55 mol% (An40–95) across internalresorption surfaces with a negative correlation between highAn mol% (>70), MgO wt% and FeO wt%. In situ Sr isotope analysesof zoned plagioclase phenocrysts show that the 87Sr/86Sr ratiosof individual zones range from 0·70568 to 0·70627.The upper end of this range is notably more radiogenic thanthe host basaltic andesite whole-rocks (< 0·70574).Crystal zones with the highest An content have the highest 87Sr/86Srvalues, requiring a source or melt with elevated radiogenicSr, rich in Ca and with lower Mg and Fe. Recent Merapi eruptiverocks contain abundant xenoliths, including metamorphosed volcanoclasticsediment and carbonate country rock (calc-silicate skarns) analysedhere for petrographic textures, mineralogy, major element compositionand Sr isotope composition. The xenoliths contain extremelycalcic plagioclase (up to An100) and have whole-rock 87Sr/86Srratios of 0·70584 to 0·70786. The presence ofthese xenoliths and their mineralogy and geochemistry, coupledwith the 87Sr/86Sr ratios observed in different zones of individualphenocrysts, indicate that magma–crust interaction atMerapi is potentially more significant than previously thought,as numerous crystal cores in the phenocrysts appear to be inheritedfrom a metamorphosed sedimentary crustal source. This has potentiallysignificant consequences for geochemical mass-balance calculations,volatile saturation and flux and eruptive behaviour at Merapiand similar island arc volcanic systems elsewhere. KEY WORDS: assimilation; isotopes; Merapi; xenolith; calc-silicate  相似文献   

12.
The Miocene to Quaternary lavas of northwestern Syria range from basanite, alkali basalts, and tholeiites to basaltic andesites, hawaiites, and mugearites. Crustal assimilation and fractional crystallization processes (AFC) modified the composition of the mantle derived magmas. Crustal assimilation is indicated by decreasing Nb/U (52.8–17.9) and increasing Pb/Nd (0.09–0.21) and by variable isotopic compositions of the lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–0.51269, 206Pb/204Pb: 18.98–18.60) throughout the differentiation. Modeling of the AFC processes indicates that the magmas have assimilated up to 25% of continental upper crust. The stratigraphy of the lavas reveals decreasing degrees and increasing depths of melting with time and the strongly fractionated heavy rare earth elements indicate melt generation in the garnet stability field. Modeling of melt formation based on trace element contents suggests that 8–10% melting of the asthenospheric mantle source produced the tholeiites, whereas basanite and alkali basalts are formed by 2–4% melting of a similar source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
The bulk (post-eruptive) wt% FeO concentration in each of 11 phenocryst-poor (<5%) andesite and dacite (60–69 wt% SiO2) lavas from different monogenetic vents in the Mexican arc has been measured by titration, in duplicate. The results match, within analytical error, the wt% FeO content of the magmas during phenocryst growth (pre-euptive), which were calculated on the basis of oxygen fugacity and temperature results from Fe–Ti two-oxide oxygen barometry. The average deviation between the pre- and post-eruptive FeO concentrations is ±0.15 wt%. Application of the plagioclase-liquid hygrometer shows that at the time of phenocryst growth, these 11 magmas contained from ~3–8 wt% H2O, which was extensively degassed upon eruption. There is no evidence that degassing of ≤8 wt% H2O changed the oxidation state of these magmas. Calculations of pre-eruptive and post-eruptive oxygen fugacity values relative to the Ni-NiO buffer (in terms of log10 units) for the 11 samples span a similar range; pre-eruptive ∆NNO = −0.9 to +0.7 and post-eruptive ∆NNO = −0.4 to +0.8. The data further show that extensive groundmass (closed-system) crystallization had no affect on bulk Fe3+/Fe2+ ratios. Finally, there is no systematic variation in the range of pre-eruptive Fe3+/FeT values of the samples as a function of SiO2 concentration (i.e., differentiation). Therefore, the results of this study indicate that the elevated Fe3+/FeT ratios of arc andesites and dacites, compared with magmas erupted in other tectonic settings, cannot be attributed to the effects of (1) degassing of H2O, (2) closed-system crystallization, and/or (3) differentiation effects, but instead must be inherited from their parental source rocks (i.e., mantle-derived arc basalts).  相似文献   

14.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

15.
Between 1953 and 1974, approximately 0.5 km3 of andesite and dacite erupted from a new vent on the southwest flank of Trident volcano in Katmai National Park, Alaska, forming an edifice now known as Southwest (or New) Trident. Field, analytical, and experimental evidence shows that the eruption commenced soon after mixing of dacite and andesite magmas at shallow crustal levels. Four lava flows (58.3–65.5 wt% SiO2) are the dominant products of the eruption; these contain discrete andesitic enclaves (55.8–58.9 wt% SiO2) as well as micro- and macro-scale compositional banding. Tephra from the eruption spans the same compositional range as lava flows; however, andesite scoria (56–58.1 wt% SiO2) is more abundant relative to dacite tephra, and is the explosively erupted counterpart to andesite enclaves. Fe–Ti oxide pairs from andesite scoria show a limited temperature range, clustered around 1000 °C. Temperatures from grains found in dacite lavas possess a wider range; however, cores from large (>100 μm) magnetite and coexisting ilmenite give temperatures of ∼890 °C, taken to represent a pre-mixing temperature for the dacite. Water contents from dacite phenocryst melt inclusions and phase equilibria experiments on the andesite imply that the two magmas last resided at a water pressure of 90 MPa, and contained ∼3.5 wt% H2O, equivalent to 3 km depth if saturated. Unzoned pyroxene and sodic plagioclase in the dacite suggest that it likely underwent significant crystallization at this depth; highly resorbed anorthitic plagioclase from the andesite suggests that it originated at greater depths and underwent relatively rapid ascent until it reached 3 km, mixed with dacite, and erupted. Diffusion profiles in phenocrysts suggest that mixing preceded eruption of earliest lava by approximately one month. The lack of a compositional gap in the erupted rock suite indicates that thorough mixing of the andesite and dacite occurred quickly, via disaggregation of enclaves, phenocryst transfer from one magma to another, and direct mixing of compositionally distinct melt phases. Received: 22 September 1999 / Accepted: 4 April 2000  相似文献   

16.
长白山区二道白河流域早更新世玄武质熔岩的成因   总被引:2,自引:1,他引:1  
马晗瑞  杨清福  盘晓东  武成智  陈聪 《岩石学报》2015,31(11):3484-3494
采用岩石化学和同位素分析方法,研究了二道白河流域早更新世玄武质熔岩的成因。玄武质熔岩由钠质拉斑玄武岩和钾质粗面玄武岩、玄武质粗面安山岩组成。它们的REE分配形式比较相近,表明它们来自共同的源区。Sr、Nd、Pb同位素示踪表明,二道白河流域早更新世玄武质熔岩岩浆源区接近于似原始地幔。它们的Mg#=100Mg O/(Mg O+Fe O)低于中国东部新生代玄武岩原始岩浆的Mg#(60~68),Ni(27.76×10-6~200.6×10-6)低于原始地幔,Rb/Sr(0.05~0.09)、Ba/Rb(15.64~264)高于原始地幔,说明这些岩石不是源自原始地幔。玄武质熔岩的DI变化于42~67,具有高Ca、高Sr、Eu正异常,微量元素图解显示玄武岩保留部分熔融趋势,粗面玄武岩、玄武质粗安岩具有结晶分异趋势,岩浆上升过程中发生了不同程度的地壳混染作用。玄武质熔岩的Nb/Ta之比为14.8~15.8,与勘察加半岛深俯冲带火山类似。Nb/Ta-(Na2O-K2O)关系图解显示研究区玄武质岩浆的形成与俯冲板片的部分熔融有关。  相似文献   

17.
Major and trace element and isotopic ratios (Sr, Nd and Pb) are presented for mafic lavas (MgO > 4 wt%) from the southwestern Yabello region (southern Ethiopia) in the vicinity of the East African Rift System (EARS). New K/Ar dating results confirm three magmatic periods of activity in the region: (1) Miocene (12.3–10.5 Ma) alkali basalts and hawaiites, (2) Pliocene (4.7–3.6 Ma) tholeiitic basalts, and (3) Recent (1.9–0.3 Ma) basanite-dominant alkaline lavas. Trace element and isotopic characteristics of the Miocene and Quaternary lavas bear a close similarity to ocean island basalts that derived from HIMU-type sublithospheric source. The Pliocene basalts have higher Ba/Nb, La/Nb, Zr/Nb and 87Sr/86Sr (0.70395–0.70417) and less radiogenic Pb isotopic ratios (206Pb/204Pb = 18.12–18.27) relative to the Miocene and Quaternary lavas, indicative of significant contribution from enriched subcontinental lithospheric mantle in their sources. Intermittent upwelling of hot mantle plume in at least two cycles can explain the magmatic evolution in the southern Ethiopian region. Although plumes have been originated from a common and deeper superplume extending from the core–mantle boundary, the diversity of plume components during the Miocene and Quaternary reflects heterogeneity of secondary plumes at shallower levels connected to the African superplume, which have evolved to more homogeneous source.  相似文献   

18.
The Camusú Aike volcanic field (CAVF), part of the discontinuous N–S-trending belt of Cenozoic mafic lava formations that occur in a backarc position along extra-Andean Patagonia, is located in southern Patagonia (∼50°S, Santa Cruz province), approximately 70 km east of the extensive Meseta de las Vizcachas and just south of the upper Río Santa Cruz valley. The CAVF volcanics cover a surface of ∼200 km2 and occur mainly as lava flows and scoria cones. They are subdivided into two groups: Group I volcanics are high-TiO2, low-Mg# olivine-hypersthene-normative basalts and trachybasalts that erupted at about 2.9 Ma; Group II lavas are much less abundant, more primitive basaltic andesites that erupted at about 2.5 Ma. Both groups show a within-plate geochemical signature, though it is more marked in Group I lavas.The main geochemical characteristics, age, and location of CAVF volcanics are consistent with the slab window opening model proposed by different authors for the genesis of the Miocene-Recent mafic magmatism of Patagonia south of 46.5°S. The whole-rock geochemical and Sr–Nd isotope features of Group I lavas (87Sr/86Sr=0.7035–0.7037; 143Nd/144Nd=0.51288–0.51291) indicate a genetic link between these lavas and the primitive basalts in southernmost Patagonia (Pali Aike volcanic field and Estancia Glencross area), which have been interpreted as melting products of an isotopically depleted asthenosphere. The relatively evolved compositions of the erupted Group I magmas are modeled by a polybaric crystal fractionation process without significant involvement of crustal contamination. The more primitive Group II lavas are strongly depleted in incompatible elements, have slightly higher (LREE+Ba+Th+U)/HFSE ratios, and have more enriched Sr–Nd isotope compositions (87Sr/86Sr≈0.7039; 143Nd/144Nd≈0.51277) that are more akin to the Patagonian basalts farther to the north. The most likely explanation for the geochemical features of Group II lavas is the occurrence in their mantle source of a small proportion of a subduction-related, enriched component that likely resides in the former mantle wedge or the basal continental lithospheric mantle.  相似文献   

19.
Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号