首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The calcium-isotope composition (δ44/42Ca) was analyzed in modern, Cretaceous and Carboniferous marine skeletal carbonates as well as in bioclasts, non-skeletal components, and diagenetic cements of Cretaceous and Carboniferous limestones. In order to gain insight in Ca2+aq-CaCO3-isotope fractionation mechanisms in marine carbonates, splits of samples were analyzed for Sr, Mg, Fe, and Mn concentrations and for their oxygen and carbon isotopic composition. Biological carbonates generally have lower δ44/42Ca values than inorganic marine cements, and there appears to be no fractionation between seawater and marine inorganic calcite. A kinetic isotope effect related to precipitation rate is considered to control the overall discrimination against 44Ca in biological carbonates when compared to inorganic precipitates. This is supported by a well-defined correlation of the δ44/42Ca values with Sr concentrations in Cretaceous limestones that contain biological carbonates at various stages of marine diagenetic alteration. No significant temperature dependence of Ca-isotope fractionation was found in shells of Cretaceous rudist bivalves that have recorded large seasonal temperature variations as derived from δ18O values and Mg concentrations. The reconstruction of secular variations in the δ44/42Ca value of seawater from well preserved skeletal calcite is compromised by a broad range of variation found in both modern and Cretaceous biological carbonates, independent of chemical composition or mineralogy. Despite these variations that may be due to still unidentified biological fractionation mechanisms, the δ44/42Ca values of Cretaceous skeletal calcite suggest that the δ44/42Ca value of Cretaceous seawater was 0.3-0.4‰ lower than that of the modern ocean.  相似文献   

2.
The Gordon Group carbonates consist of biota of the Chlorozoan assemblage, diverse non‐skeletal grains and abundant micrite and dolomite, similar to those of modern warm water carbonates. Cathodoluminescence studies indicate marine, meteoric and some burial cements. Dolomites replacing burrows, mudcracks and micrite formed during early diagenesis.

δ18O values (‐5 to ‐7%ō PDB) of the non‐luminescent fauna and marine cement are lighter than those of modern counterparts but are similar to those existing within low latitudes during the Ordovician because of the light δ18O values of Ordovician seawater (‐3 to ‐5%o SMOW). The δ18O difference (2%o) between marine and meteoric calcite indicates that Ordovician meteoric water was similar to that in modern subtropics. Values of δ13C relative to δ18O indicate that during the Early Ordovician there were higher atmospheric CO2 levels than at present but during the Middle and Late Ordovician they became comparable with the present because of a change from ‘Greenhouse’ to glacial conditions. δ18O values of Late Ordovician seawater were heavier than in the Middle Ordovician mainly because of glaciation.

Dolomitization took place in marine to mixed‐marine waters while the original calcium carbonate was undergoing marine to meteoric diagenesis.  相似文献   

3.
Thin (<10 m), extensive dolostones conformably capping late Precambrian glaciogenic rocks in the Kimberley region and the Adelaide Geosyncline commonly comprise micritic dolomite apparently of ‘primary’ or early diagenetic origin. Their aphanitic texture, the presence of algal and cryptalgal lamination, tepee structures and intraclastic rocks, and the lack of saline evaporites or their pseudomorphs, suggest deposition mainly in supratidal to lagoonal environments under a seasonally evaporitic/humid climate. Less common oolitic or pelletal rocks and a finely laminated shaly dolostone facies also suggest peritidal to marine influences.

The ‘cap’ dolostones (omitting possible large erratics) have a δ18O mean of —6.4 ± 1.9% vs. PDB and a δ13C mean of —1.9 ± 2.1% vs. PDB. The oxygen mean is comparable to that determined for other late Precambrian ‘primary’ or early diagenetic dolostones not associated with glaciogenic rocks and presumably deposited under warm conditions. The carbon mean, in contrast, is lighter than that determined for other late Precambrian dolostones.

The sedimentological and oxygen‐isotope data are consistent with relatively high formation‐temperatures for the cap dolostones. Abrupt climatic warming at the close of late Precambrian glacial epochs is implied.  相似文献   

4.
The Ca isotope variation of 11 Miocene and Pleistocene, authigenic, marine phosphates is rather small compared to the corresponding variation in δ18O values. The δ44Ca values are not correlated with the δ18O values and, therefore, they are not temperature controlled. It is likely that the δ44Ca values of the phosphorites reflect the variation in the δ44Ca values of paleo-seawater but, in contrast to Sr, not the isotopic composition of seawater itself. Furthermore, Ca and Sr isotopic compositions are decoupled with decreasing stratigraphic age of the phosphate peloids with Sr isotopic compositions changing to more radiogenic values while Ca isotopic compositions remain rather stable. All samples have δ44Ca values below present-day seawater values, suggesting that phosphate formation discriminates against heavy Ca isotopes.Phosphorites and carbonaceous sediments have a similar Ca isotopic variation during the Miocene. A systematic and more or less constant shift between marine carbonates and phosphates is observed: the phosphate samples are slightly less enriched in 40Ca compared to carbonates. This shift has been related to a mineral-dependent kinetic mass fractionation during precipitation from seawater. The rather stable δ44Ca value for the 19 to 9 Ma old phosphorites points to a constant δ44Ca fractionation of about 1.1 between seawater and phosphorites during the past and suggests steady-state conditions for the Mid-Miocene seawater (sedimentation flux equals erosion flux).  相似文献   

5.
The age of the Katera Group, which occupies a large area in the western North Muya Range and occurs 100–150 km east of the Uakit Group, is a debatable issue. Based on geological correlations with reference sections of the Baikal Group and Patom Complex, the Katera and Uakit groups were previously considered nearly coeval units and assigned to Late Precambrian (Khomentovskii and Postnikov, 2002; Salop, 1964). This was supported partly by the Sm–Nd model datings (Rytsk et al., 2007, 2009, 2011). Finds of the Paleozoic flora substantiated the revision of age of the Uakit Group and its assignment to the Late Devonian–Early Carboniferous (Gordienko et al., 2010; Minina, 2003, 2012, 2014). We have established that Sr and C isotopic compositions in carbonates of these groups differ drastically, as suggested by their different ages. Sediments of the Nyandoni Formation (Katera Group), which contains carbonates characterized by minimum values of 87Sr/86Sr = 0.7056 and maximum values of δ13C = 4.9‰, were accumulated in the first half of Late Riphean (800–850 Ma ago), whereas the overlying Barguzin Formation (87Sr/86Srmin = 0.70715, δ13Cmax= 10.5‰) was deposited at the end of Late Riphean (700–750 Ma). Judging from the isotope data, the Nerunda Formation (Uakit Group), which contains carbonates with characteristics matching the most rigorous criteria of fitness for the chemostratigraphic correlation (Sr content up to 4390 μg/g, Mn/Sr < 0.1, δ18O = 23.0 ± 1.8‰), was deposited at the end of Vendian ~550–540 Ma ago). The sequence includes thick typical carbonate horizons with very contrast carbon isotopic compositions: the lower unit has anomalous high δ13C values (5.8 ± 1.0‰); the upper unit, by anomalous low δ13C values (–5.2 ± 0.5‰]). Their Sr isotopic composition is relatively homogeneous (87Sr/86Sr = 0.7084 ± 0.0001) that is typical of the Late Vendian ocean. The S isotopic composition of pyrites from the Nyandoni Formation (Katera Group) (δ34S = 14.1 ± 6.8‰) and pyrites from the Mukhtunny Formation (Uakit Group) (δ34S = 0.7 ± 1.4‰) does not contradict the C and Sr isotopic stratigraphic data.  相似文献   

6.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

7.
A carbonate buildup of Middle Triassic age, the Esino Limestone, outcrops in the Southern Calcareous Alps of Lombardy (N Italy). Along its margin and within the open subtidal facies, the Esino Limestone contains calcite cement-filled cavities of cm to m size. These features, known as evinosponges, may form pervasive networks within the host rock. The filling consists of concentric, isopachous layers of fibrous low-Mg calcite crystals characterized by strong undulose extinction and bent cleavages. The cement crusts are non-luminescent under cathodoluminescence, but both cements and host rock are cross-cut by micro-fractures filled with bright-luminescent calcite, related to late void-filling sparite. Mixing of different carbonates is reflected in stable isotope data. On the hand specimen scale, the oxygen and carbon isotope compositions of cements and host rock show little variation. When compared on a regional scale, the values cover a broad range from δ18O(PDB)=?5‰ to ?12‰ and from δ13O =0‰ to +3‰. The linear covariant trends defined by the oxygen and carbon isotope data for different sampling regions reflect the admixture of late, isotopically depleted calcite with an isotopically enriched non-luminescent calcite of early diagenetic origin. The Esino Limestone fibrous cements, which were probably precipitated in the marine or marine-meteoric phreatic environment, were affected by late diagenetic processes that caused mineral deformation and isotopic depletion through recrystallization and the admixture of a later calcite. These later calcites precipitated from penetrative fluids possibly related to Late Triassic volcanic activity and/or to the Late Cretaceous/Early Palaeogene alpine orogeny.  相似文献   

8.
The calcium isotopic compositions (δ44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (αs−f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of αs−f at equilibrium in the marine sedimentary section is 1.0000 ± 0.0001, which is significantly different from the value (0.9987 ± 0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ∼14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in δ44Ca of +0.15‰ for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.  相似文献   

9.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

10.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

11.
Boron isotope composition of marine carbonates has been proposed as a paleo-pH proxy and potential tool to reconstruct atmospheric pCO2. The precise knowledge of the boron isotopic composition of ancient seawater represents the fundamental prerequisite for any paleo-pH reconstruction. This contribution presents boron isotope values for Silurian to Permian brachiopod calcite that might be used to reconstruct pH or boron isotope composition of past oceans. All brachiopod shells were screened for diagenetic recrystallization by means of cathodoluminescence microscopy, trace element geochemistry (B, Fe, Mn, Sr) as well as SEM. Only nonluminescent shells revealing well-preserved microstructures, high strontium and boron concentrations as well as low iron and manganese contents were accepted for boron isotope analysis. The boron isotope ratios of Silurian, Devonian, Pennsylvanian and Permian brachiopod calcite range from 6.8 to 11.0‰, 7.3 to 14.9‰, 12.4 to 15.8‰ and 10.1 to 11.7‰, respectively. These δ11B values are significantly lower in comparison to δ11B values of modern biogenic carbonates and indicate that the Paleozoic oceans were depleted in 11B by up to 10‰. Box modeling of the boron geochemical cycle suggests that the significant depletion of 11B in the oceanic reservoir may have been initiated by an enhanced continental boron discharge. Our data support the earlier made conclusion that boron isotopes may not be used in the geological past as reliable paleo-pH proxy unless the boron isotopic composition of ancient oceans can be constrained by further studies.  相似文献   

12.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

13.
This study presents magnesium stable-isotope compositions of various biogenic carbonates of several marine calcifying organisms and an algae species, seawater samples collected from the western Dutch Wadden Sea, and reference materials. The aim of this study is to explore the influence of mineralogy, taxonomy and environmental factors (e.g., seawater isotopic composition, temperature, salinity) on magnesium-isotopic (δ26Mg) ratios of skeletal carbonates. Using high-precision multi-collector inductively coupled plasma mass spectrometry, we observed that the magnesium-isotopic composition of seawater from the semi-enclosed Dutch Wadden Sea is identical to that of open marine seawater. We further found that a considerable component of the observed variability in δ26Mg values of marine skeletal carbonates can be attributed to differences in mineralogy. Furthermore, magnesium-isotope fractionation is species-dependent, with all skeletal carbonates being isotopically lighter than seawater. While δ26Mg values of skeletal aragonite and high-magnesium calcite of coralline red algae indicate the absence or negligibility of metabolic influences, the δ26Mg values of echinoids, brachiopods and bivalves likely result from a taxon-specific level of control on Mg-isotope incorporation during biocalcification. Moreover, no resolvable salinity and temperature effect were observed for coralline red algae and echinoids. In contrast, Mg-isotope data of bivalves yield ambiguous results, which require further validation. The data presented here, point to a limited use of Mg isotopes as temperature proxy, but highlight the method’s potential as tracer of seawater chemistry through Earth’s history.  相似文献   

14.
Here we present Sr, C, and O isotope curves for Ordovician marine calcite based on analyses of 206 calcitic brachiopods from 10 localities worldwide. These are the first Ordovician-wide isotope curves that can be placed within the newly emerging global biostratigraphic framework. A total of 182 brachiopods were selected for C and O isotope analysis, and 122 were selected for Sr isotope analysis. Seawater 87Sr/86Sr decreased from 0.7090 to 0.7078 during the Ordovician, with a major, quite rapid fall around the Middle-Late Ordovician transition, most probably caused by a combination of low continental erosion rates and increased submarine hydrothermal exchange rates. Mean δ18O values increase from −10‰ to −3‰ through the Ordovician with an additional short-lived increase of 2 to 3‰ during the latest Ordovician due to glaciation. Although diagenetic alteration may have lowered δ18O in some samples, particularly those from the Lower Ordovician, maximum δ18O values, which are less likely to be altered, increase by more than 3‰ through the Ordovician in both our data and literature data. We consider that this long-term rise in calcite δ18O records the effect of decreasing tropical seawater temperatures across the Middle-Late Ordovician transition superimposed on seawater δ18O that was steadily increasing from ≤−3‰ standard mean ocean water (SMOW). By contrast, δ13C variation seems to have been relatively modest during most of the Ordovician with the exception of the globally documented, but short-lived, latest Ordovician δ13C excursion up to +7‰. Nevertheless, an underlying trend in mean δ13C can be discerned, changing from moderately negative values in the Early Ordovician to moderately positive values by the latest Ordovician. These new isotopic data confirm a major reorganization of ocean chemistry and the surface environment around 465 to 455 Ma. The juxtaposition of the greatest recorded swings in Phanerozoic seawater 87Sr/86Sr and δ18O at the same time as one of the largest marine transgressions in Phanerozoic Earth history suggests a causal link between tectonic and climatic change, and emphasizes an endogenic control on the O isotope budget during the Early Paleozoic. Better isotopic and biostratigraphic constraints are still required if we are to understand the true significance of these changes. We recommend that future work on Ordovician isotope stratigraphy focus on this outstanding Middle-Late Ordovician event.  相似文献   

15.
The contact aureole developed in siliceous carbonates surrounding the Beinn an Dubhaich granite, Skye, shows textural and stable isotope evidence for infiltration of aqueous fluids during both prograde and retrograde metamorphism. Strongly depleted isotope compositions of reaction-product calcite correlate with high silica and fluorine contents, demonstrating a strong link between isotopic alteration and metasomatism by fluids with a significant magmatic component, even at the margins of the aureole. The oxygen and carbon isotope compositions of the carbonates form a linear cluster with a positive slope of about five, consistent with the depletion of isotope compositions by the infiltration of magmatic and/or meteoric fluids. Rayleigh fractionation during devolatilization played a minor role in determining the final isotope composition. Stable isotope compositions of coexisting calcite–dolomite pairs show varying amounts of isotopic disequilibrium, which correlate with the inferred fluid infiltration mechanism. Much of the calcite in dolostones is the product of infiltration-driven reactions along fractures, and is greatly depleted isotopically relative to the host dolomite, especially at talc grade. At higher grades the calcite–dolomite fractionation is smaller, probably due to both increased fluid–rock interaction and a greater tendency for fluid infiltration to be pervasive on the grain-scale. Limestones generally show near-equilibrium fractionation of oxygen and carbon owing to the overwhelming compositional influence of the host calcite. Veins formed during late-stage hydrothermal circulation have strongly 18O-depleted compositions relative to the host rock. No small-scale spatial patterns to the isotopic depletion were observed, but the extent of fluid infiltration was greatest in the west of the aureole. Fluid infiltration was clearly highly heterogeneous, with no evidence of a consistent flow direction. It is not possible to determine fluid fluxes or flow directions from one-dimensional flow models based on continuum flow in the Beinn an Dubhaich aureole.  相似文献   

16.
The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (−38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (−38‰ to −22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ34S values (−14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ18O consistent with a marine environment. Its δ13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite crosscutting a vein filled with chalcedony and celestite, and late euhedral quartz in a limestone from the top of the formation have lower δ18O values (∼+19‰), suggesting that they precipitated from meteoric fluids, isotopically close to present-day pore waters of the formation. Finally, the study illustrates the transition from very active, biotic diagenesis to abiotic diagenesis. This transition appears to be driven by compaction of the sediment, which inhibited movement of bacterial cells by reduction of porosity and pore sizes, rather than a lack of inorganic carbon or sulphates.  相似文献   

17.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

18.
Lead and zinc mineralization occurs in dolostones of the Middle Devonian Sibzar Formation at Ozbak-Kuh, which is located 150 km north of Tabas city in East Central Iran. The ore is composed of galena, sphalerite and calcite, with subordinate dolomite and bitumen. Wall-rock alterations include carbonate recrystallization and dolomitization. Microscopic studies reveal that the host rock is replaced by galena and sphalerite. The Pb–Zn mineralization is epigenetic and stratabound. The δ13C values of hydrothermal calcite samples fall in the narrow range between ?0.3‰ and 0.8‰. The δ18O values in calcite display a wider range, between ?14.5‰ and ?11.9‰. The δ13C and δ18O values overlap with the oxygen and carbon isotopic compositions of Paleozoic seawater, indicating the possible important participation of Paleozoic seawater in the ore-forming fluid. The δ18O signature corresponds to a spread in temperature of about 70 °C in the ore-bearing fluid. The δ13C values indicate that the organic materials within the host rocks did not contribute significantly in the hydrothermal fluid. The δ34S values of galena and sphalerite samples occupy the ranges of 12.2‰–16.0‰ and 12.1–16.8‰, respectively. These values reveal that the seawater sulfate is the most probable source of sulfur. The reduced sulfur was most likely supplied through thermochemical sulfate reduction. The sulfur isotope ratios of co-precipitated sphalerite–galena pairs suggest that deposition of the sulfide minerals took place under chemical disequilibrium conditions. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the galena samples represent average values of 18.08, 15.66, and 38.50, respectively. These ratios indicate that galena Pb likely originated from an orogenic source in which supracrustal rocks with high 238U/204Pb and 232Th/204Pb ratios are dominant. The average lead isotope model age portrays Cambrian age. This model age is not coeval with the host rocks, which are of middle Devonian age. It is probable that the pre-Middle Devonian model age shows the derivation of Pb from older sources either from host rocks of Cambrian age or from deposits previously formed in these rock units. The Pb isotopic composition of galena accords with the occurrence of an orogenic activity from Late Neoproterozoic to Lower Cambrian in Central Iran. The proposed genetic model considers the fact that mineralization formed in fractured and brecciated host rocks along shear zones and faults from metal-bearing connate waters that were discharged due to deformational dewatering of sediments.  相似文献   

19.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

20.
Zoned calcites were found in the phragmacone chambers of three Sonniniid ammonites from marine Middle Jurassic sandstones (Isle of Skye, U.K.). Each ammonite has a unique sequence of up to nine zones of calcite which fill or partially fill the chambers. Zones are defined by changes in the density of minute opaque inclusions and variation in trace-element composition. Proximal (early) calcites have undulose extinction and some exhibit the specific fabrics of fascicular-optic and radiaxial fibrous calcites. Microdolomite inclusions are found in one specimen. Early calcites, interpreted as replacements after a single isopachous fringe of acicular carbonate (probably high magnesium calcite), are succeeded by blocky ferroan calcite cement. In one specimen there are two distinct generations of calcite, in the others there is a continuous mosaic incorporating both early calcites and late cement. Isotopic composition of the early calcite zones demonstrates the initial importance of organic derived carbon (δ13C =— 26‰, δ18O ‰ O). Further cementation and mineralogical stabilization took place at increased temperatures and probably after modification of the pore water isotopic composition (calcites with δ13C =— O‰, δ18O~— 10‰). The distinctive fabrics and zonal patterns probably developed during the replacement of the precursor cement and are not primary growth features. Reversals in isotopic and trace element trends are believed to be related to the rate of neomorphic crystal growth and hence to the degree of exchange with external pore waters. Further increase in temperature, probably during Tertiary igneous activity, gave rise to the extremely light δ18O values of the late cements in the ammonite which had previously had least contact with external waters (cements with δ13C ~ O, δ18O ~— 20‰).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号