首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Any permanent presence on the Moon will require use of materials from the lunar regolith, the surface soil layer on the Moon. Thus, knowledge of the thickness of the lunar regolith is essential. It has been proposed that crater counts obtained from high Sun angle photography give larger estimates of impact crater equilibrium diameters than for low Sun angle photography, and thus deeper estimates of lunar surface regolith than were previously made using crater morphology, size of blocky rimmed craters, and equilibrium diameters determined on low Sun angle images. The purpose of this comment is to evaluate this result as a means of resolving this important question before planning for future lunar missions is undertaken  相似文献   

2.
The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the Moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the Moon of these volatile elements are considered.  相似文献   

3.
In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.  相似文献   

4.
Meteorites ejected from the surface of the Moon as a result of impact events are an important source of lunar material in addition to Apollo and Luna samples. Here, we report bulk element composition, mineral chemistry, age, and petrography of Miller Range (MIL) 090036 and 090070 lunar meteorites. MIL 090036 and 090070 are both anorthositic regolith breccias consisting of mineral fragments and lithic clasts in a glassy matrix. They are not paired and represent sampling of two distinct regions of the lunar crust that have protoliths similar to ferroan anorthosites. 40Ar‐39Ar chronology performed on two subsplits of MIL 090070,33 (a pale clast impact melt and a dark glassy melt component) shows that the sample underwent two main degassing events, one at ~3.88 Ga and another at ~3.65 Ga. The cosmic ray exposure data obtained from MIL 090070 are consistent with a short (~8–9 Ma) exposure close to the lunar surface. Bulk‐rock FeO, TiO2, and Th concentrations in both samples were compared with 2‐degree Lunar Prospector Gamma Ray Spectrometer (LP‐GRS) data sets to determine areas of the lunar surface where the regolith matches the abundances observed on the sample. We find that MIL 090036 bulk rock is compositionally most similar to regolith surrounding the Procellarum KREEP Terrane, whereas MIL 090070 best matches regolith in the feldspathic highlands terrane on the lunar farside. Our results suggest that some areas of the lunar farside crust are composed of ferroan anorthosite, and that the samples shed light on the evolution and impact bombardment history of the ancient lunar highlands.  相似文献   

5.
The processes of solar wind sputtering and meteoritic impact vaporization have created materials in the lunar regolith which were deposited from a vapor phase. Although the quantity of such exotic condensed substances should theoretically be comparable with that of materials which have been melted by impacts, their existence in the fines has not been generally recognized. We have investigated the physical and chemical properties of materials deposited from vapors generated by hydrogen-ion sputtering and thermal evaporation of lunar and artificial ferrosilicates. Both processes are highly reducing. The deposits are enriched in Fe, have large, nonselective, optical absorptivities, and contain abundant sub-microscopic, superparamagnetic grains of metallic Fe which exhibit the characteristicg=2.1 ESR resonance. The sputter-deposited films are enriched in heavy elements. Thus the hypothesis that the lunar fines contain several percent of materials deposited from the vapor phase accounts in a natural manner for many of the unusual optical, physical and chemical properties of lunar soils. The vapor-deposits are probably concentrated in the agglutinate particles of the regolith.  相似文献   

6.
自适应光学技术应用于月球激光测距试验中需要实时针对月面扩展源进行大气波前倾斜量的提取,望远镜在跟踪月亮的过程中存在月面本身相对望远镜的物方视场的旋转以及望远镜自身的运动所引起的像方视场的旋转,本文讨论了望远镜物方视场及像方视场旋转的规律以及其对大气波前倾斜量提取的影响。  相似文献   

7.
Abstract— The petrology, major and trace element geochemistry, and Nd‐Ar‐Sr isotopic compositions of a ferroan noritic anorthosite clast from lunar breccia 67215 have been studied in order to improve our understanding of the composition, age, structure, and impact history of the lunar crust. The clast (designated 67215c) has an unusually well preserved igneous texture. Mineral compositions are consistent with classification of 67215c as a member of the ferroan anorthositic suite of lunar highlands rocks, but the texture and mineralogy show that it cooled more rapidly and at shallower depths than did more typical ferroan anorthosites (FANs). Incompatible trace element concentrations are enriched in 67215c relative to typical FANs, but diagnostic signatures such as Ti/Sm, Sc/Sm, plagiophile element ratios, and the lack of Zr/Hf and Nb/Ta fractionation show that this cannot be due to the addition of KREEP. Alternatively, 67215c may contain a greater fraction of trapped liquid than is commonly present in lunar FANs. 147Sm‐143Nd isotopic compositions of mineral separates from 67215c define an isochron age of 4.40 ± 0.11 Gyr with a near‐chondritic initial ε143Nd of +0.85 ± 0.53. The 40Ar‐39Ar composition of plagioclase from this clast records a post‐crystallization thermal event at 3.93 ± 0.08 Gyr, with the greatest contribution to the uncertainty in this age deriving from a poorly constrained correction for lunar atmosphere 40Ar. Rb‐Sr isotopic compositions are disturbed, probably by the same event recorded by the Ar isotopic compositions. Trace element compositions of FANs are consistent with crystallization from a moderately evolved magma ocean and do not support a highly depleted source composition such as that implied by the positive initial ε143Nd of the ferroan noritic anorthosite 62236. Alternatively, the Nd isotopic systematics of lunar FANs may have been subject to variable degrees of modification by impact metamorphism, with the plagioclase fraction being more strongly affected than the mafic phases. 147Sm‐143Nd isotopic compositions of mafic fractions from the 4 ferroan noritic anorthosites for which isotopic data exist (60025, 62236, 67016c, 67215c) define an age of 4.46 ± 0.04 Gyr, which may provide a robust estimate for the crystallization age of lunar ferroan anorthosites.  相似文献   

8.
A new,earth-based radar technique for the measurement of lunar topography   总被引:2,自引:0,他引:2  
Radio interferometry is a new technique for the measurement of the surface topography of the Moon. Elevation data may be obtained directly without regard for unambiguously-identified features, for any lunar surface element that yields a recognizable radar echo.A program has been undertaken at the Haystack Observatory for the topographic mapping of the major part of the lunar Earthside hemisphere. Some results are presented for the Alphonsus-Arzachel region, showing evidence for a late lava flow of a viscosity and, hence, presumably a chemical composition, differing from that of near-by mare surfaces.  相似文献   

9.
The maximum value of possible lunar dynamo-field in our epoch is estimated in the scheme of precession dynamo model. In the light of our notions on the evolution of the Earth-Moon system this scheme may account for the size and character of ancient lunar fields that resulted in magnetization of surface lunar rocks, as well as for the absence of lunar dipole field of paleomagnetic origin in our epoch.  相似文献   

10.
The need for precise definition of lunar reference systems is stressed and the principles on which systems of lunar coordinates could be based are established. Differences between coordinate systems defined by the dynamical properties of the lunar configuration and the rotational motion of the lunar globe about its centre of gravity are outlined, and rigorous mathematical formulae relating those systems have been developed. The principles of reduction of measurements are outlined and in the Appendix the absolute coordinates obtained for 700 lunar features are presented.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

11.
The potential effect of the future Russian lunar laser ranging system (LLRS) on the accuracy of lunar ephemerides is discussed. In addition to the LLRS in Altai, several other observatories suitable for the LLRS installation are considered. The variation of accuracy of lunar ephemerides in the process of commissioning of new LLRS stations is estimated by mathematical modeling. It is demonstrated that the error in the determination of certain lunar ephemeris parameters may be reduced by up to 16% after seven years of operation of the Altai LLRS with a nearly optimal observational program.  相似文献   

12.
Long-term degradation of optical devices on the Moon   总被引:1,自引:0,他引:1  
Forty years ago, Apollo astronauts placed the first of several retroreflector arrays on the lunar surface. Their continued usefulness for laser ranging might suggest that the lunar environment does not damage optical devices. However, new laser ranging data reveal that the efficiency of the three Apollo reflector arrays is now diminished by a factor of 10 at all lunar phases and by an additional factor of 10 when the lunar phase is near full Moon. These deficits did not exist in the earliest years of lunar ranging, indicating that the lunar environment damages optical equipment on the timescale of decades. Dust or abrasion on the front faces of the corner-cube prisms may be responsible, reducing their reflectivity and degrading their thermal performance when exposed to face-on sunlight at full Moon. These mechanisms can be tested using laboratory simulations and must be understood before designing equipment destined for the Moon.  相似文献   

13.
Abstract— We investigated the characteristics and history of lunar meteorites Queen Alexandra Range 93069, Yamato 793169 and Asuka 881757 based on the abundances of all stable noble gas isotopes, the concentrations of the radionuclides 10Be, 26Al, 36Cl, and 81Kr, and the abundances of Mg, Al, K, Ca, Fe, Cl, Sr, Y, Zr, Ba, and La. Based on the solar wind and cosmic-ray irradiations, QUE 93069 is the most mature lunar meteorite studied up to now. The 40Ar/36Ar ratio of the trapped component is 1.87 ± 0.16. This ratio corresponds to a time when the material was exposed to solar and lunar atmospheric volatiles ~400 Ma ago. On the other hand, Yamato 793169 and Asuka 881757 contain very little or no solar noble gases, which indicates that these materials resided in the top layer of the lunar regolith only briefly or not at all. For all lunar meteorites, we observe a positive correlation of the concentrations of cosmic-ray produced with trapped solar noble gases. The duration of lunar regolith residence for the lunar meteorites was calculated based on cosmic-ray produced 21Ne, 38Ar, 78Kr, 83Kr, and 126Xe and appropriate production rates that were derived based on the target element abundances and the shielding indicator 131Xe/126Xe. For QUE 93069, Yamato 793169, and Asuka 881757, we obtained 1000 ± 400 Ma, 50 ± 10 Ma, and <1 Ma, respectively. Both Asuka 881757 and Yamato 793169 show losses of radiogenic 4He from U and Th decay and Yamato 793169 also 40Ar loss from K-decay. For Asuka 881757, we calculate a K-Ar gas retention age of 3100 ± 600 Ma and a 244Pu-136Xe fission age of 4240 ± 170 Ma. This age is one of the oldest formation ages ever observed for a lunar basalt. The exposure history of QUE 93069 after ejection from the Moon was derived from the radionuclide concentrations: ejection 0.16 ± 0.03 Ma ago, duration of Moon-Earth transit 0.15 ± 0.02 Ma and fall on Earth <0.015 Ma ago. This ejection event is distinguished temporally from those which produced the other lunar meteorites. We conclude that six to eight events are necessary to eject all the known lunar meteorites.  相似文献   

14.
J. Warell  D.T. Blewett 《Icarus》2004,168(2):257-276
We present new optical (0.4-0.65 μm) spectra of Mercury and lunar pure anorthosite locations, obtained quasi-simultaneously with the Nordic Optical Telescope (NOT) in 2002. A comparative study is performed with the model of Lucey et al. (2000, J. Geophys. Res. 105, 20297-20305, and references therein) between iron-poor, mature, pure anorthosite (>90% plagioclase feldspar) Clementine spectra from the lunar farside and a combined 0.4-1.0 μm mercurian spectrum, obtained with the NOT, calculated for standard photometric geometry. Mercury is located at more extreme locations in the Lucey ratio-reflectance diagrams than any known lunar soil, specifically with respect to the extremely iron-poor mature anorthosites. Though quantitative prediction of FeO and TiO2 abundances cannot be made without a more generally applicable model, we find qualitatively that the abundances of both these oxides must be near zero for Mercury. We utilize the theory of Hapke (2002, Icarus 157, 523-534, and references therein), with realistic photometric parameters, to model laboratory spectra of matured mineral powders and lunar soils, and remotely sensed spectra of lunar anorthosites and Mercury. An important difference between fabricated and natural powders is the high value for the internal scattering parameter necessary to interpret the spectra for the former, and the requirement of rough and non-isotropically scattering surfaces in the modelling of the latter. The mature lunar anorthosite spectra were well modelled with binary mixtures of calcic feldspars and olivines, grain sizes of 25-30 μm and a concentration of submicroscopic metallic iron (SMFe) of 0.12-0.15% in grain coatings. The mercurian spectrum is not possible to interpret from terrestrial mineral powder spectra without introducing an average particle scattering function for the bulk soil that increases in backscattering efficiency with wavelength. The observed spectrum is somewhat better predicted with binary mixture models of feldspars and pyroxenes, than with single-component regoliths consisting of either albite or diopside. Correct spectral reflectance values were predicted with a concentration of 0.1 wt% SMFe in coatings of 15-30 μm sized grains. Since reasonable cosmogonical formation scenarios for Mercury, or meteoritic infall, predict iron concentrations at least this high, we draw the conclusion that the average grain size of Mercury is about a factor of two smaller than for average returned lunar soil samples. The 0.6-2.5 μm spectrum of McCord and Clark (1979, J. Geophys. Res. 178, 745-747) is used to further limit the possible range of mineralogical composition of Mercury. It is found that an intimately mixed and matured 3:1 labradorite-to-enstatite regolith composition best matches both the optical and near-infrared spectra, yielding an abundance of ∼1.2 wt% FeO and ∼0 wt% TiO2.  相似文献   

15.
The spectral coefficients of the selenoid have been obtained by inverting the potential series for lunar gravity. The reference value of the lunar level surface has been determined on the base of the mean radius of lunar topography. This enables to evaluate the parameters of the tri-axial reference ellipsoid best fitted to the lunar level surface.  相似文献   

16.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

17.
The Flux of Lunar Meteorites onto the Earth   总被引:1,自引:0,他引:1  
Numerous new finds of lunar meteorites in Oman allow detailed constraints to be obtained on the intensity of the transfer of lunar matter to the Earth. Our estimates show that the annual flux of lunar meteorites in the mass interval from 10 to 1000 g to the entire Earth's surface should not be less than several tenths of a kilogram and is more likely equal to tens or even a few hundred kilograms, i.e., a few percent of the total meteorite flux. This corresponds to several hundred or few thousand falls of lunar meteorites on all of Earth per year. Even small impact events, which produce smaller than craters on the Moon smaller than 10 km in diameter, are capable of transferring lunar matter to the Earth. In this case, the Earth may capture between 10 to 100% of the mass of high-velocity crater ejecta leaving the Moon. Our estimates for the lunar flux imply rather optimistic prospects for the discovery of new lunar meteorites and, consequently, for the analyses of the lunar crust composition. However, the meteorite-driven flux of lunar matter did not play any significant role in the formation of the material composition of the Earth's crust, even during the stage of intense meteorite bombardment.  相似文献   

18.
Average data for igneous and/or metaigneous rocks and soils from seven lunar sites are presented. There are compositional similarities between Apollo 11 and Luna 16 eastern maria, Ap 12 and 15 western maria and between Ap 16 and L 20 highlands. Subtle differences do exist between the paired mare sites and the two highland sites and striking differences between the eastern and western maria. Chondritic normalized REE (rare earth element) patterns for igneous rocks and soils from all sites range from 7-350 generally with negative Eu anomalies. Anorthositic gabbroes to anorthosites, presumably highland material, exhibit a positive Eu anomaly. The REE patterns or Sr isotopic ratios suggest two lava flows each for the L 16 and Ap 14 sites, at least four lava flows for the Ap 11 and 12 site and about six for the Ap 15 site. Paucity of lunar andesites suggests rather limited lunar chemical differentiation. Norite-KREEP is a prominent component at Ap 12, 14 and 15, less at Ap 11 and 16 and L 16 and apparently very low at the L 20 highland site. Derivation of lunar soils can be best explained using multi-component mixing systems. Characterization of meteoritic impacting bodies is also observed in addition to a steady state veil of 1.9% carbonaceous Cl like material in soils. Interelement correlations impose constraints on the primitive composition of the Moon and on magmatic processes like selective volatilization.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

19.
Abstract— Found during the 2004 U.S. Antarctic Search for Meteorites season, LaPaz Icefield (LAP) 04841 represents an addition to the LaPaz lunar basalts suite and brings the total mass collected to 1.93 kg. The presence of FeNi grains, troilite, and the anorthositic composition of plagioclase are evidence for the lunar origin of this meteorite. Pyroxene and olivine Mn/Fe values plot along the trend set for lunar basalts. Analyses of chromite grains provide a V/(Al + Cr) ratio of 1.33 ± 13, translating to an fO2 one log unit below the IW buffer, in accordance with previous fO2 estimates for lunar basalts. Application of the Zr‐cooling speedometer, for ilmenite and ulvöspinel pairs, gives a cooling rate of 5.2 °C/day, matching previous estimates of cooling rates for the LaPaz lunar meteorites and Apollo mare basalts. Mineral modes and chemistries, as well as trace‐element patterns, provide compelling evidence for pairing of this meteorite to others in the LaPaz lunar basalt suite.  相似文献   

20.
New achievements in lunar investigations by spacecrafts provide the reasons why some new international scale of special lunar time nowdays is under discussion. However, the introduction of special time scales for other celestial bodies would turn to be a complex affair. To document this point of view it is shown that, both for making precise astrometrical calculations and for creating a lunar calendar, it should be reasonable to make use of the generally accepted scales of terrestrial time; there is no real need to introduce any special lunar time unit. For calendar needs it is suggested to introduce a local scale of time based on count of the lunations and usual mean solar time units being used within the every lunation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号