首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main results in the theory of the interpretation of geopotential fields are generalized to the case of arbitrary variable electromagnetic fields by means of elaborating electrodynamic analogues for the integral of the Cauchy type.The generalized Kertz method for separating a variable electromagnetic field into parts related to the sources located in different regions of space is elaborated on the basis of this technique. The generalized Kertz method allows the selection of external and internal, normal and anomalous parts of the geomagnetic field, as well as the separation of geomagnetic anomalies into the surface and deep components caused by conductivity inhomogeneities in the Earth's crust and upper mantle.The theory of analytical continuation of variable electromagnetic fields in a conducting medium is also developed in the present work using the technique of analogues for the integral of the Cauchy type. It is shown that analytical continuation of a field downwards permits the determination of the location and form of deep geoelectric inhomogeneities according to the configuration of the isolines of flux functions for magnetic and electric fields.  相似文献   

2.
三维起伏地形条件下航空瞬变电磁响应特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
航空瞬变电磁法以其速度快、成本低、通行性好等的优势能够有效的应用于地质地形条件复杂的地区.目前对于航空瞬变电磁法的研究主要基于平坦地形的理想情况,对于地形效应的研究相对较少,然而实际应用中地形不可避免,若忽略地形影响将对资料解释造成较大的误差,从而制约航空电磁方法的进一步发展.本文基于交错网格的时域有限差分方法对三维起伏地形条件下航空瞬变电磁进行正演模拟,在保证算法准确性的前提下给出大量模型算例.以经典地形模型为例,利用所给方法计算三维正演响应,结果显示起伏对于航空瞬变电磁数据有着显著的影响且影响主要集中在早期.而后,以实际地质资料为基础,构建起伏地形条件下包含多个异常体的三维复杂模型,计算了复杂模型的航空瞬变电磁响应,并给出三维全域视电阻率曲线,从而对地形效应的影响有了更加直观的认知.最后,通过大量模型讨论了地形的尺寸参数、电性参数、飞行轨迹与飞行高度等因素变化对于航空瞬变电磁数据的影响情况,并得出有价值的结论.  相似文献   

3.
The main features of the distribution of volume and surface charges in a conducting medium can be described separately for direct and alternating electromagnetic fields. The density of charges depends on the conductivity of a medium and on the electrical field. The relation is particularly simple for the quasi-stationary field, i.e., when the influence of displacement currents is negligible. Conditions are formulated under which electrical charges arise in a conducting medium: electrical charges are shown to exist for direct and quasi-stationary fields when there is a component of electric field parallel to the gradient of conductivity. The density of these charges is proportional to the applied electric field.  相似文献   

4.
从电偶源三维地电断面可控源电磁法的二次电场边值问题及其变分问题出发,采用任意六面体单元对研究区域进行剖分,并且在单元分析中同时对电导率及二次电场进行三线性插值,实现电导率分块连续变化情况下,基于二次场的可控源电磁三维有限元数值模拟.这个新的可控源电磁三维正演方法可以模拟实际勘探中地下任意形状及电性参数连续变化的复杂模型.理论模型的计算结果表明,均匀大地计算的视电阻率误差和相位误差分别为0.002%和0.0005°.分层连续变化模型的有限元计算结果表明,其与对应的分层均匀模型解析结果有明显差异.三维异常体组合模型以及倾斜异常体等复杂模型的有限元计算结果也有效地反映了异常形态.  相似文献   

5.
Summary A simple cylindrical model is employed to estimate the effect of non-flatness of the ground on the sub-surface electromagnetic field from a current-carrying cable on the surface. It is shown that, if the surface curvature is sufficiently small, the fields in the cylinder model are very similar to those for the conducting half-space model of the earth employed earlier. The results can be used to provide estimates of expected errors in electromagnetic direction-finding of a buried receiving terminal.The research reported here was supported in part by the Mine Safety Center, U.S. Bureau of Mines.  相似文献   

6.
Summary The paper describes equipment designed to study the effect of a conducting hostrock/overburden on the electromagnetic anomaly of sulphide ore bodies embedded therein. The model was constructed strictly according to the theory of electromagnetic similitude so as to constitute a direct reading reproduction of the field vectors. The experiments were conducted at a fixed, crystal-controlled frequency of 100 kHz using mainly a graphite sheet immersed in a dilute hydrochloric acid solution of predetermined conductivity to simulate vein and manto type of ore deposits surrounded by a partially conducting zone. Both the inphase and quadrature components of the anomaly were measured in terms of the primary field after elimination of the regional anomaly by means of a measuring bridge and a compensator. A comparison of the anomaly profiles obtained over the ore model when it is held in air with those obtained for corresponding situations inside a conducting solution shows a general enhancement of response [1–3].  相似文献   

7.
The influence of the finite ionospheric conductivity on the structure of dispersive, nonradiative field line resonances (FLRs) is investigated for the first four odd harmonics. The results are based on a linear, magnetically incompressible, reduced, two-fluid MHD model. The model includes effects of finite electron inertia (at low altitude) and finite electron pressure (at high altitude). The ionosphere is treated as a high-integrated conducting substrate. The results show that even very low ionospheric conductivity (P = 2 mho) is not sufficient to prevent the formation of a large-amplitude, small-scale, nonradiative FLR for the third and higher harmonics when the background transverse plasma inhomogeneity is strong enough. At the same time, the fundamental FLR is strongly affected by a state of low conductivity, and when P = 2 mho, this resonance forms only small-amplitude, relatively broad electromagnetic disturbance. The difference in conductivities of northern and southern ionospheres does not produce significant asymmetry in the distribution of electric and magnetic fields along the resonant field line. The transverse gradient of the background Alfven speed plays an important role in structure of the FLR when the ionospheric conductivity is finite. In cases where the transverse inhomogeneity of the plasma is not strong enough, the low ionospheric conductivity can prevent even higher-harmonic FLRs from contracting to small scales where dispersive effects are important. The application of these results to the formation and temporal evolution of small-scale, active auroral arc forms is discussed.  相似文献   

8.
A major problem in electromagnetic induction studies in regions of localized source fields, such as the auroral and equatorial electrojet regions, is the source effect. Using an analytical model, the electromagnetic response of a buried conducting cylinder to sheet current and line current excitations has been studied for the period rangeT=5 s to 24 h. The validity of the numerical results obtained from the analytical model are compared with the numerical results obtained from a finite difference model. The results show that for periods less than 30 min, there is no significant difference in the response of the cylinder to both source fields. However, significant differences are observed at longer periods. It was also observed that the equivalent height at which a uniform sheet current at 100 km above the earth's surface can be approximated by a line current varies as a function of the source period.  相似文献   

9.
The presence of steel-cased wells and other infrastructure causes a significant change in the electromagnetic fields that has to be taken into consideration in modeling and interpretation of field data. A realistic and accurate simulation requires the borehole casing to be incorporated into the modeling scheme, which is numerically challenging. Due to the huge conductivity contrast between the casing and surrounding media, a spatial discretization that provides accurate results at different spatial scales ranging from millimeters to hundreds of meters is required. In this paper, we present a full 3D frequency-domain electromagnetic modeling based on a parallel finite-difference algorithm considering the casing effect and investigate its applicability on the borehole-to-surface configuration of the Hontomín CO2 storage site. To guarantee a robust solution of linear systems with highly ill-conditioned matrices caused by huge conductivity contrasts and multiple spatial scales in the model, we employ direct sparse solvers. Different scenarios are simulated in order to study the influence of the source position, conductivity model, and the effect of the steel casing on the measured data. Several approximations of the real hollow casing that allow for a large reduction in the number of elements in the resulting meshes are studied. A good agreement between the modeled responses and the real field data demonstrates the feasibility of simulating casing effects in complex geological areas. The steel casing of the well greatly increases the amplitude of the surface electromagnetic fields and thus improves the signal-to-noise ratio and the sensitivity to deep targets.  相似文献   

10.
大地电导率横向突变处磁暴感应地电场的邻近效应   总被引:3,自引:0,他引:3       下载免费PDF全文
大地电性结构的横向变化会对磁暴时的感应地电流和地面电磁场产生影响.本文假设扰动地磁场变化的源为地面以上一定高度的面电流,以某一典型层状大地电导率结构为基础,构造含有电导率横向突变的地电模型.针对感应电流的方向与横向分界面平行的情形,采用伽辽金有限元法对电导率横向突变处的感应地电场进行了分析,揭示了电导率横向差异产生的趋肤效应和邻近效应的机理,针对与电性结构分界面平行的输电线路,从评估地磁感应电流的角度讨论了影响的严重程度和范围.  相似文献   

11.
A numerical method is used to investigate the effect of topographic and local thermal conductivity anomalies on near-surface heat flow for two-dimensional models. Heat flow associated with a sloping topographic structure is calculated. Also, the effects of a fault structure associated with the sloping topography are considered. Vertical and horizontal heat flow components are calculated alone; the surface of the earth as well as throughout the whole region of interest. The results indicate that surface heat flow is substantially affected by topographic relief and the horizontal heat flow component associated with topographic features can be large. Also, regional heat flow is greatly perturbed by local thermal conductivity anomalies and the effect of topographic features may be considerably modified by the subsurface structure.  相似文献   

12.
The diffusion of electromagnetic fields is dependent not only on conductivity, but also on magnetic permeability, dielectric permittivity and polarizability, i.e. dispersive conductivity. The long‐offset transient electromagnetic (LOTEM) method is mainly used to determine the spatial distribution of conductivity in the subsurface. However, earlier work on loop‐loop TEM suggests that transient EM methods can also be affected by induced polarization (IP). Numerous 1D forward calculations were carried out to study the IP effect on LOTEM data, using the Cole‐Cole relaxation model to simulate the polarizability of the ground. Besides the polarizability of each layer, the IP effect depends on the LOTEM field set‐up and the spatial distribution of conductivity in the ground. In particular, near‐surface layers with high chargeabilities can significantly distort the late time transients of the electric field components in the vicinity of the transmitter. The influence of polarizable layers on the magnetic field components can be neglected under normal circumstances. In 1997 and 1999, LOTEM measurements were carried out at Mt. Vesuvius in Italy to explore the geological structure of the volcano. Sensitivity studies on the effect of polarizable layers suggest that high chargeabilities in connection with conductive layers at greater depths would result in a detectable distortion of the electric field transients. Although the simultaneous IP measurements revealed high chargeabilities in a near‐surface layer, no evidence of IP effects could be found in the measured LOTEM data. We conclude that the observed chargeabilities are local and that 3D effects are probably present in the data. Another aspect is the measurement of the system response, which is usually measured by placing a receiver very close to the transmitter. Therefore, large distortions can be expected if near‐surface polarizable layers exist. This was verified in practice by field measurements in an area with high chargeabilities in Longerich, Cologne.  相似文献   

13.
The influence of a partially conducting overburden/host rock on the electromagnetic response of a horizontal, tabular conducting ore body, investigated with the aid of quantitative scale model experiments, was discussed in an earlier paper (Gaur, Verma and Gupta 1971), which will be referred to as I. This paper presents the results of more comprehensive experiments subsequently carried out to study the combined effect of various geological parameters, namely: the dip and depth of burial of the ore body, its electrical conductivity and that of the zone surrounding it. These results obtained for four different transmitter-receiver configurations confirm the general enhancement of response in varying degrees, brought about by a conducting overburden. However, the transformation of the shapes of the anomaly profiles with increasing overburden conductivity is observed to depend on the dip of the ore body, being more drastic for gently dipping ones. Variations in the inphase and quadrature components as well as in the phase of the anomaly have been studied for varying depths of burial of the ore body and for a number of values of the solution conductivity. Anomaly index diagrams have been constructed with a view to predicting possible values of the geological parameters from a knowledge of the anomaly components. It is felt that the notable overburden effects are caused by a drastic redistribution and concentration of currents, mostly in a narrow loop at the top of the ore body, brought about by its galvanic contact with an extended medium of relatively poorer conductivity.  相似文献   

14.
The electric and magnetic fields generated by horizontal electric and vertical magnetic dipoles lying on the surface of a conducting medium with horizontal anisotropy are investigated. Full expressions of their Fourier transforms are given, and the fields for a vertical magnetic dipole are calculated numerically. The radial and vertical magnetic components are found to be independent of the receiver-transmitter direction, whereas the other magnetic and electric components strongly vary with this direction. These results give useful criteria for defining the direction and amplitude of anisotropy from ground data; a ground experiment on fissured limestone was found to confirm the expected variations of the various field components. It is believed that this electromagnetic method can be used in order to provide information about the direction and amplitude of electric anisotropy.  相似文献   

15.
This work reviews electromagnetic analogue model studies of the coast effect, dealing particularly with a vertical interface model, a thin conducting sheet model, a wedge model, and a wedge underlain by a conducting block simulating an upwelling in a conducting zone beneath the coast. The vertical interface model results and the infinitely conducting thin sheet model results show good agreement with calculated values. It is concluded that a sloping sea-land interface alone cannot account for the experimentally observed coast effect, but that a sloping sea-land interface underlain by a conducting step could produce the observed coast effect.  相似文献   

16.
The composition of the upper mantle is of great significance to our understanding of plate tectonics and global evolution. Information about the physical properties of the Earth at upper mantle depths, including lateral variations in electrical conductivity, can be deduced from measurements of the electric and magnetic fields at the Earth's surface. Electromagnetic methods appear to give poorer resolution than do some other methods, for example seismics, but as they are sensitive to quite different properties of a medium they provide a different and complementary class of information.The basic theory of electromagnetic sounding methods is briefly reviewed below, and evidence regarding lateral conductivity inhomogeneities in the Earth's upper mantle is examined. While lateral electrical conductivity inhomogeneities appear to be the rule rather than the exception, the interpretation of electromagnetic data still presents difficulties and the results from many regions are not as yet unambiguous. Where the data are of sufficient resolution, a rapid increase in electrical conductivity can usually be identified within the upper mantle. The depth to this highly conductive zone is different in different tectonic environments, but is broadly consistent between analogous but widely separated tectonic environments. A comparatively shallow conducting region is found beneath the ocean lithosphere. The depth of this region is dependent on lithospheric age. Many of the more shallow conducting regions in both continental and oceanic environments are associated with high heat flow values and seismic low velocity zones. These highly conducting regions may be zones of partial melt.  相似文献   

17.
目前,对于可控源电磁法各向异性介质2.5维问题,主要采用一次场、二次场分离的方法消除场源奇异性并降低截断边界对计算区域的影响.该方法数值计算精度高,但是很难适用于复杂地形条件下的数值模拟.针对复杂地形问题,基于总场的有限元方法表现出一定的优越性,然而,这种方法存在场源奇异性问题和截断边界问题.本文采用基于总场计算的方法对带地形的可控源电磁法2.5维各向异性介质进行模拟研究,推导了考虑电导率和介电常数各向异性的2.5维控制方程;引入网格加密-收缩算法降低场源奇异性的影响范围,提升数值计算效率;引入行波分解边界条件降低截断边界的影响;提出任意采样反傅里叶变换方法,快速、高精度地计算出空间域电磁场分量.理论模型数值算例中:首先,验证了本文算法的有效性;其次,对任意各向异性倾角产生的可控源电磁响应规律进行研究;最后,采用山丘模型对各向异性介质电磁场的响应规律进行了模拟和分析.  相似文献   

18.
This paper tries to formulate the C-response of geomagnetic depth sounding(GDS)on an Earth model with finite electrical conductivity. The computation is performed in a spherical coordinate system. The Earth is divided into a series of thin spherical shells. The source is approximated by a single spherical harmonic P10 due to the spatial structure of electrical currents in the magnetosphere. The whole solution space is separated into inner and external parts by the Earth surface. Omitting displacement current, the magnetic field in the external space obeys Laplacian equation, while in the inner part, due to the finite conductivity, the electromagnetic fields obey Helmholtz equation. To connect the magnetic fields in the inner and external space, the continuity condition of magnetic fields is used on the Earth surface. The external magnetic fields are expressed by the inner and external source coefficients, from which a new parameter called C-response is computed from the inner coefficient divided by the external coefficient, thus normalizing the actual source strength. The inner magnetic fields in each layer can be recursively derived by the continuity boundary condition of both normal and tangential components of the magnetic field from the initial boundary condition at core-mantle-boundary. The consistency of our C-responses with that from a typical 1-D global model validates the accuracy of the proposed algorithm. Numerical results also show that the C-response estimated from the geomagnetic transfer function method will deviate exceeding 5%from the actual response at longer periods than about 106s, which means that ignoring the curvature of the Earth at extreme long periods will make inversion result unreliable. Therefore, an accurate C-response should be computed in order to lay a solid foundation for reliable inversion.  相似文献   

19.
A numerical method is used to calculate the electromagnetic fields associated with a three-dimensional conductivity anomaly. The source field is due to horizontal magnetic dipoles placed at two different positions with respect to the conductivity anomaly. The transfer functions and related perturbation and induction arrows associated with the fields are calculated and compared with the arrows obtained from a uniform source calculation. The results show the source effect on the induction arrows and indicate that the perturbation arrows provide a method of outlining the spatial extent of the anomaly. The transfer function calculations are made for both exact and approximate normal fields. In the transfer function calculation the anomalous fields are correlated with a normal field as suggested by Schmucker (1970) and Cochrane and Hyndman (1970).  相似文献   

20.
A frequency-domain analysis is outlined for a conducting sphere in a uniform Input field: inequispaced alternating half-sine wave pulses. The Barringer Input air-borne electromagnetic exploration system uses such source fields. Theoretical profiles of Hρ(t), the horizontal magnetic component over the sphere from different elevations and for various conductivity and geometrical factors are presented. Based on these results some useful features such as penetration and detectibility are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号