首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 529 毫秒
1.
传统的高光谱端元提取算法一般是在高维的光谱特征空间中进行运算,并且图像的全部像元都参与算法,因此运算量偏大,运算效率较低。提出了一种光谱角特征空间的概念,利用图像的空间信息辅助端元提取。图像的全部像元都可以映射到8维的光谱角特征空间中,样本点在特征空间中距离原点的远近表征了其在图像中的位置是否为地物区块的边缘,利用这点可以对高光谱图像进行空间分割。在分割后的每个子块图像内部只选取少数"最纯"像元参与端元提取算法,从而大大降低了端元提取的计算复杂度。  相似文献   

2.
高光谱图像端元提取算法研究进展与比较   总被引:2,自引:0,他引:2  
高光谱图像中混合像元的存在不仅影响了基于遥感影像的地物识别和分类精度,而且已经成为遥感科学向定量化方向发展的主要障碍。本文分析和研究了现有的典型端元提取算法,在此基础上,对这些算法进行归纳总结,从是否假定纯像元存在角度将其分为两类:端元识别算法和端元生成算法,并就两种分类方法选取了具有代表性的6种典型端元提取算法:N-FINDR、VCA、SGA、OSP、ICE和MVC-NMF算法进行分析和实验。通过对这6种方法的实验比较,得出两种端元提取分类方法的优点与不足,并对今后的研究工作提出展望。  相似文献   

3.
杜会建  赵银娣  蔡燕 《测绘科学》2012,37(2):126-128,32
端元提取技术是混合像元分解中重要的步骤之一,传统的端元提取方法仅考虑了像元的光谱信息。本文将数学形态学算子扩展到高光谱空间,并应用到端元提取技术中,可以顾及像元的上下文信息。利用AVIRIS高光谱仿真数据对算法进行了实验验证,结果表明本文算法具有较强的抗噪能力和较高的可靠性。在此基础上,结合徐州地区的EO-1 Hyperion高光谱遥感图像,使用本文算法进行了端元提取应用研究,将实验结果与纯净像元指数、顶点成分分析方法做了对比分析和精度评价,证明本文算法是一种可靠的高光谱遥感图像端元提取技术。  相似文献   

4.
针对顶点成分分析方法无法实现复杂地表环境下的高光谱影像端元精确提取问题,提出了一种基于空谱协同多尺度顶点成分分析的端元提取方法,通过影像空谱特征融合和聚类分割,对不同分辨率空间尺度下的分割影像进行端元协同提取,并考虑噪声对影像端元提取精度的影响,提升端元提取的精度。首先,对影像进行预处理,采用低秩矩阵分解去除噪声。其次,对高光谱影像进行空谱多特征提取,利用多特征融合和K-means算法进行聚类分割,获取地物分布的空间异质性信息,提升后续端元提取的精度。然后,对高分辨率影像空间降采样,利用顶点成分分析方法对降采样后的低分辨率分割图像进行端元提取,并利用坐标映射寻找高分辨率影像中的相应端元,利用光谱角来判定是否为纯端元。最后,遍历上述方法至所有分割影像以获取最终的端元集合。使用模拟数据和真实的高分五号高光谱数据对提出的方法进行实验验证。实验结果表明,空谱协同多尺度顶点成分分析方法可提取高精度的纯净端元,且计算效率较高。  相似文献   

5.
高光谱遥感图像的端元递进提取算法   总被引:2,自引:1,他引:1       下载免费PDF全文
李姗姗  田庆久 《遥感学报》2009,13(2):269-275
针对高光谱遥感图像中可能并不存在图像端元这一问题,试探的提出一种基于线性混合模型下对初步提取的最近似于端元的像元进行再分析的端元提取算法,即高光谱遥感图像的端元递进提取算法.首先针对3个端元线性混合的图像进行提取,在图像中找到最大近似于端元的像元,利用凸面单形体的几何性质,找出初步提取像元附近位于图像端元构成的凸面单形体边界上的像元,通过计算图像端元在边界像元中的含量,应用线性反解提取出图像端元.模拟图像中的初步结果表明在不存在图像端元的图像中,该算法可以有效的提取3个端元,应用于实际Hyperion图像取得了较好的实验效果.  相似文献   

6.
传统的混合像元分解算法认为每个像元都包含图像中所能提取的全部端元组分,但这并不符合实际情况。实际上图像中大多数混合像元仅由少部分端元混合而成。由于端元提取精度及噪声的影响,采用全部端元对混合像元进行分解,会使得混合像元中实际并不存在的端元的丰度估计值不为零,分解结果存在较大误差。由于混合像元大多存在于不同地物的交界处,基于此,本文提出了一种结合图像的空间信息选取混合像元最优端元子集的方法。利用一个空间结构元素,从混合像元的附近邻域开始搜索,将搜索到的纯净像元光谱与所提取的图像端元光谱进行对比,并确定混合像元的端元子集进行分解。根据RMSE大小和变化情况,逐步扩大结构元素的大小,不断调整搜索范围,直至得到最优端元组合。模拟数据和真实数据的试验结果表明,该方法相比传统的全端元光谱分解方法,在总体上获得了更好的分解效果。  相似文献   

7.
高光谱图像中混合像元的存在直接影响基于遥感影像的地物识别精度,光谱解混算法可以有效地解决混合像元问题.最小体积限制的非负矩阵分解算法(MVC-NMF)不需要假定纯像元的存在;并且在自动提取端元的同时,能够获取每种端元所对应的丰度图;然而该方法并没有考虑丰度矩阵的稀疏特性.提出了将平滑L0模稀疏约束引入MVC-NMF算法中,用于进一步提高算法的精度.实验结果表明:改进后的算法在相同的实验环境条件下比MVC-NMF算法解混的精度更高.  相似文献   

8.
混合像元的存在不仅影响了基于高光谱图像的地物识别和分类精度,而且已经成为遥感科学向定量化发展的主要障碍。目前的混合像元分解算法大多采用线性混合模型,其关键步骤为端元提取。文中从线性混合模型的定义出发,总结了近年来提出的端元提取算法,并重点对SMACC、VCA、SGA等算法进行了深入的分析,最后总结了混合像元分解的发展趋势。  相似文献   

9.
高光谱遥感影像混合像元分解研究进展   总被引:6,自引:1,他引:5  
受高光谱成像仪低空间分辨率及复杂地物的影响,高光谱遥感图像存在大量混合像元。为提高地表分类精度以及满足亚像元级目标探测的需求,混合像元分解技术一直是高光谱遥感研究热点之一。本文主要对高光谱混合像元分解技术中的核心问题:端元数目估计、端元提取算法、丰度估计算法进行综述,系统地分析了各种典型算法的原理及优缺点,进一步阐述研究过程中建立高精度遥感混合反演模型与遥感产品业务化中的混合像元分解技术难题,同时针对今后混合像元分解技术发展方向,指出在继续引入新型算法理论方法基础上,结合用户应用需求,推进高光谱混合像元分解算法业务化应用,为高光谱遥感工程化应用提供支持。  相似文献   

10.
传统混合像元分类算法按照同一标准同时提取各类地物,导致错分现象严重。本文利用端元光谱间的独立性关系和决策二叉树的分层特征,提出基于决策二叉树的混合像元分类方法。利用黄山地区Landsat7 ETM+影像数据进行实验,结果表明:该算法正确合理,分类精度比SGA-NCLS方法高,但分类效率比SGA-NCLS低。  相似文献   

11.
针对端元提取算法依赖人工确定端元数量的问题, 提出一种端元自动确定与提取的迭代算法。首先, 通过统计分析获得像元相似性阈值, 确定候选端元判据;其次, 对候选端元进行内、外部相关性判断, 对端元光谱集进行病态矩阵规避判断;最后, 以候选端元判据为迭代终止条件, 当图像空间不存在候选端元时, 获得端元集合并确定端元数。实验结果表明, 该方法正确有效, 可以避免顺序端元提取方法的错误风险, 提高端元提取自动化程度。  相似文献   

12.
模拟真实场景的混合像元分解   总被引:1,自引:1,他引:0  
在总结混合像元分解方法的基础上, 提出了一种模拟真实场景的像元分解方法, 该方法首先通过真实场 景的模拟获得各分量的丰度, 结合遥感影像与场景模拟的丰度反演端元反射率(模拟端元), 最后用带约束条件的线 性模型进行混合像元分解。用浙江省安吉县毛竹林调查资料及Landsat TM 对该方法进行验证和对比分析表明, 基 于模拟端元的混合像元分解结果比基于影像端元和参考端元的精度高且具有良好的稳健性。模拟真实场景的混合 像元分解方法将样地调查数据的先验知识应用于端元提取, 并将三维模拟模型引入到二维的线性光谱分解中, 具 有一定的优势和应用推广前景。  相似文献   

13.
田玉刚  杨贵 《测绘学报》2015,44(2):214-219
由于数据量大,目前大多数端元提取算法均需较长的计算时间,限制了这些算法的有效应用。本文提出了以光谱梯度特征为搜索条件的快速端元提取方法,其核心包括基于光谱梯度特征的候选端元快速筛选和基于光谱解混误差的端元识别两部分。由于能够从影像中快速筛选出少量的像元光谱作为候选端元,故具有较好的计算性能;同时由于避免了非端元光谱参与端元识别,使得识别的结果具有更高的精度。试验表明,相比经典的IEA算法和ECHO算法,该算法不仅能大幅度提高端元提取速度,而且具有更准确的端元识别能力。同时,基于该算法原理,也可对现有各种算法进行改进,提升现有的各种端元提取算法的运算速度。  相似文献   

14.
正交子空间投影(OSP)方法广泛用于目标与背景的分离之中,对于高光谱影像,OSP可用于目标提取和混合像元分解,但缺点是需要端元的先验知识。针对这一问题,本文基于OSP的原理提出了一种非监督快速端元提取方法。实验使用模拟高光谱数据和由OM ISⅠ获取的真实高光谱数据,结果精度令人满意,证明了本文算法进行端元自动提取的可行性。  相似文献   

15.
陈伟  余旭初  王鹤  闻兵工  靳克强 《测绘科学》2011,36(4):16-18,30
基于凸面几何学理论,由端元作为角点的单形体的体积应该是最大的.著名的N-FINDR和SGA算法正是基于以上理论,通过在数据云中寻找体积最大的单形体来实现端元的自动提取.本文利用粒子群优化(PS0)技术,基于凸面几何学理论,设计了一个新的端元提取算法.利用模拟和真实高光谱影像对其进行了实验,并将其结果与N-FINDR和S...  相似文献   

16.
徐君  王彩玲  王丽 《测绘学报》2019,48(8):996-1003
自动形态学端元提取(automated morphological endmember extraction,AMEE)算法将结构元素内最纯像元与混合度最大的像元之间的光谱角距离定义为形态学离心率指数(morphological eccentricity index,MEI)来定量化地表示像元的纯净度。然而作为参考标准的混合度最大的像元在不同的结构元素内也是不同的,尤其是当结构元素内的纯净像元占大多数时,像元的均值光谱将更接近纯像元,此时像元的MEI越高,纯度反而越低。针对这一问题,本文提出一种像元纯度指数(pure pixel index,PPI)算法与AMEE算法相结合的端元提取算法PPI-AMEE。在结构元素内,利用PPI指数代替AMEE算法中的MEI指数来寻找最纯像元。变换结构元素时,只有最纯净的像元始终能够投影到随机生成的直线的两端,其PPI值会不断累计增大,而其他像元的PPI值则无法持续增大。累计记录每个像元的PPI值,直至满足迭代终止条件,最终形成一幅PPI图像,端元将在PPI值较大的像元中选取。PPI-AMEE算法只在相对较小的结构元素内运行PPI算法,然后再结合数学形态学中的膨胀操作对整幅图像进行处理,其同时兼顾了图像的光谱信息和空间信息。最后,采用模拟数据及美国内华达州Cuprite地区的机载可见光/红外成像光谱仪(airborne visible infrared imaging spectrometer,AVIRIS)高光谱数据对提出的PPI-AMEE算法进行试验验证。试验结果表明,PPI-AMEE算法的端元提取精度总体上优于AMEE算法和PPI算法。  相似文献   

17.
The N-FINDR algorithm has been widely used in hyperspectral image analysis for endmember extraction due to its simplicity and effectiveness. However, there are several disadvantages of implementing the N-FINDR. This letter proposes an algorithm for decomposition of mixed pixels. It improves the N-FINDR in several aspects. First, an iterative Gram-Schmidt orthogonalization is applied in the endmember searching process to replace the matrix determinant calculation used in N-FINDR, which makes this algorithm run very fast and can also guarantee the stability of its final results. Second, with the set of orthogonal bases obtained by the Gram-Schmidt orthogonalization, the algorithm can also help to estimate the proper number of endmembers and unmix the original images by itself. In addition, unlike the N-FINDR, a dimensionality reduction transform is not necessary in this algorithm. Experimental results of both simulated images and practical remote sensing images demonstrate that this algorithm is a fast and accurate algorithm for the decomposition of mixed pixels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号