首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two 14C accelerator mass spectrometry (AMS) wiggle‐match dated peat sequences from Denmark and northern England record changes in mire surface wetness reconstructed using plant macrofossil and testate amoebae analyses. A number of significant mid–late Holocene climatic deteriorations (wet shifts) associated with declines in solar activity were recorded (at ca. 2150 cal. yr BC, 740 cal. yr BC, cal. yr AD 930, cal. yr AD 1020, cal. yr AD 1280–1300, cal. yr AD 1640 and cal. yr AD 1790–1830). The wet shifts identified from ca. cal. yr AD 930 are concurrent with or lag decreases in solar activity by 10–50 years. These changes are replicated by previous records from these and other sites in the region and the new records provide improved precision for the ages of these changes. The rapidly accumulating (up to 2–3 yr cm?1, ~1310 yr old, 34 14C dates) Danish profile offers an unprecedented high‐resolution record of climate change from a peat bog, and has effectively recorded a number of significant but short‐lived climate change events since ca. cal. yr AD 690. The longer time intervals between samples and the greater length of time resolved by each sample in the British site due to slower peat accumulation rates (up to 11 yr cm?1, ~5250 yr old, 42 14C dates) acted as a natural smoothing filter preventing the clear registration of some of the rapid climate change events. Not all the significant rises in water table registered in the peat bog archives of the British and Danish sites have been caused by solar forcing, and may be the result of other processes such as changes in other external forcing factors, the internal variability of the climate system or raised bog ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A proxy climate record from a raised bog in County Fermanagh, Northern Ireland, is presented. The record spans the interval between 2850 cal. yr BC and cal. yr AD 1000 and chronological control is achieved through the use of tephrochronology and 14C dating, including a wiggle‐match on one section of the record. Palaeoclimatic inferences are based on a combination of a testate amoebae‐derived water table reconstruction, peat humification and plant macrofossil analyses. This multiproxy approach enables proxy‐specific effects to be identified. Major wet shifts are registered in the proxies at ca. 1510 cal. yr BC, 750 cal. yr BC and cal. yr AD 470. Smaller magnitude shifts to wetter conditions are also recorded at ca. 380 cal. yr BC, 150 cal. yr BC, cal. yr AD 180, and cal. yr AD 690. It is hypothesised that the wet shifts are not merely local events as they appear to be linked to wider climate deteriorations in northwest Europe. Harmonic analysis of the proxies illustrates statistically significant periodicities of 580, 423–373, 307 and 265 years that may be related to wider Holocene climate cycles. This paper illustrates how the timing of climate changes registered in peat profiles records can be precisely constrained using tephrochronology to examine possible climatic responses to solar forcing. Relying on interpolated chronologies with considerable dating uncertainty must be avoided if the climatic responses to forcing mechanisms are to be fully understood. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A wide range of palaeoenvironmental evidence from the Holocene has suggested periodicities in the Earth's climate of 10s to 1000s of years. Identifying these millennial‐, century‐ and decadal periodicities, and their impacts, is critical in developing a fuller understanding of natural climate variability. Any solar‐induced climatic change needs to be distinguished from other causes of natural climate variability and from short‐term catastrophic events induced either by external or internal processes. Such events might themselves generate a periodicity, or in combination with other forcing factors they may contribute towards a periodicity (and so spuriously imply a universal and continuing periodicity in the climate record), or they may resonate with a solar‐induced periodicity. Here, evidence from peat records for periodicity in climate change over the mid to late Holocene is reviewed and this is followed by a test of the replicability of claimed periodicities using blanket peat data covering the past 2000 yr from four sites in the British Isles. Results suggest that the mires studied do go through phases of being responsive to periodic forcing factors, with ca. 200, ca. 80 and 60–50 yr wavelengths reflected in some data sets. However, the patterns shown are not consistent. This could be the result of local conditions at individual mires (human impact, sensitivity and vegetation succession) or of changes in the strength or nature of global forcing factors. Assessing a solar–mire link remains difficult because the century‐scale variations of the Sun show different intervals between solar minima, the durations of which are themselves unequal, and because the proxy‐climate data‐sets from peat profiles may themselves not be dated with sufficient precision and/or accuracy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The temporal and spatial extent of Holocene climate change is an area of considerable uncertainty, with solar forcing recently proposed to be the origin of cycles identified in the North Atlantic region. To address these issues we have developed an annually resolved record of changes in Irish bog tree populations over the last 7468 years which, together with radiocarbon‐dated bog and lake‐edge populations, extend the dataset back to ~9000 yr ago. The Irish trees underpin the internationally accepted radiocarbon calibration curve, used to derive a proxy of solar activity, and allow us to test solar forcing of Holocene climate change. Tree populations and age structures provide unambiguous evidence of major shifts in Holocene surface moisture, with a dominant cyclicity of 800 yr, similar to marine cycles in the North Atlantic, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. The cycles, however, are not coherent with changes in solar activity (both being on the same absolute timescale), indicating that Holocene North Atlantic climate variability at the millennial and centennial scale is not driven by a linear response to changes in solar activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilexO. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.  相似文献   

7.
Tephras provide one of the most reliable methods of time control and synchronisation within Quaternary sequences. We report on the identification of two widespread rhyolitic tephras – the Kawakawa and Rangitawa tephras – preserved in extensive peat deposits on Chatham Island ~900 km east of New Zealand. The tephras, both products of supereruptions from the Taupo Volcanic Zone, occur as pale, fine‐ash dominated layers typically 10–150 mm thick. Mineralogically they are dominated by rhyolitic glass, together with subordinate amounts of quartz, feldspar, hypersthene, hornblende, Fe–Ti oxides and zircon. Phlogopite/biotite was identified additionally in Rangitawa Tephra. Ages for each tephra were obtained via mineralogical and major element glass composition‐based correlation with well‐dated equivalent deposits on mainland New Zealand, and we also obtained a new zircon fission‐track age for Rangitawa Tephra (350 ± 50 ka) on Chatham Island. Both tephras were erupted at critical times for palaeoenvironmental reconstructions in the New Zealand region: the Kawakawa at ca. 27 cal. ka, near the beginning of the ‘extended’ LGM early in marine isotope stage (MIS) 2; and the Rangitawa at ca. 350 ka near the end of MIS 10. The time constraints provided by the tephras demonstrate that Chatham Island peats contain long‐distance pollen derived from mainland New Zealand, which provides a reliable proxy for identifying glacial–interglacial climate conditions, in this case during the MIS 11–10 and MIS 2–1 cycles. The two tephras thus provide important chronostratigraphic tie‐points that facilitate correlation and synchronisation not only across the Quaternary deposits of the Chatham Islands group but also with climatically significant terrestrial and marine records in the wider New Zealand region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Palaeoenvironmental and archaeological data from Arbon Bleiche, Lake Constance (Switzerland) give evidence of a rapid rise in lake‐level dated by tree‐ring and radiocarbon to 5320 cal. yr BP. This rise event was the latest in a series of three successive episodes of higher lake‐level between 5550 and 5300 cal. yr BP coinciding with glacier advance and tree‐limit decline in the Alps. This west‐central European climate change may have favoured the quick burial and the preservation of the Alpine Iceman recently found in the Tyrolean Alps. It has possible equivalents in many records from various regions in both hemispheres dating to 5600–5000 cal. yr BP and corresponds to global cooling and contrasting patterns of hydrological changes. This major mid‐Holocene climate event marks the Hypsithermal/Neoglaciation transition possibly resulting from a combination of different factors including orbital forcing, changes in ocean circulation and variations in solar activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, a ca. 4000 cal. yr ancient lacustrine (or wetland) sediment record at the southern margin of Tarim Basin is used to reconstruct the history of climate change. Six radiocarbon dates on organic matter were obtained. δ18O and δ13C of carbonate, pollen and sediment particle size were analysed for climate proxies. The proxies indicate that a drier climate prevailed in the area before ca. 1010 BC and during period 1010 BC–AD 500 climate then changed rapidly and continuously from dry to moist, but after about AD 500 climate generally shows dry condition. Several centennial‐scale climatic events were revealed, with the wettest spell during AD 450–550, and a relatively wetter interval between AD 930–1030. Pollen results show that regional climate may influence human agricultural activities. Spectral analysis of mean grain size (MGS) proxy reveals statistically pronounced cyclic signals, such as ca. 200 yr, ca. 120 yr, ca. 90 yr, ca. 45 yr and ca. 33 or 30 yr, which may be associated with solar activities, implying that solar variability plays an important role in the decadal‐ and centennial‐scale climate variations in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Very little is known about the temporal pattern and the palaeoenvironmental implications of Holocene colluvial processes (debris‐flow and water‐flow processes) in eastern Norway. In this study, well‐dated sedimentary successions from 19 deep excavations are used to reconstruct Holocene colluvial activity in upper Gudbrandsdalen, eastern Norway. Following deglaciation, debris‐flow and water‐flow events have been common in upper Gudbrandsdalen throughout the Holocene, with 62% of the recognised debris‐flow and water‐flow units deposited prior to 5000 cal. yr BP. Relatively high colluvial activity is recorded at ca. 8600–7400, 2400–1900 and 800–400 cal. yr BP, with a conspicuous peak at ca. 8500–8100. Periods of relatively low colluvial activity are recorded at ca. 7100–6500, 5900–5300 and 3500–2500 cal. yr BP. Two different weather situations, unusually heavy rains and warm periods during the snowmelt season, are responsible for triggering colluvial processes in this area. These different weather situations may in turn be related to different climatic conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Vorren, K.‐D., Jensen, C. E. & Nilssen, E. 2012 (January): Climate changes during the last c. 7500 years as recorded by the degree of peat humification in the Lofoten region, Norway. Boreas, Vol. 41, pp. 13–30. 10.1111/j.1502‐3885.2011.00220.x. ISSN 0300‐9483. Two peat cores from two neighbouring bogs in Lofoten, northern Norway were densely AMS dated and analysed for humification. The two cores have been influenced by human agricultural impact, especially c. 1600 cal. a BP, which may have affected the local hydrology of the bogs. From 7400 cal. a BP onwards, 19 distinct wet‐shifts are recorded in the two cores. Eight or nine of these correspond chronologically to periods of low solar activity. This correlation is most convincing during the last 2000 years. Some wet‐shifts are connected with a solar low‐activity period during the Subboreal/Subatlantic transition, which in central Europe is dated at 2750–2565 cal. a BP. For Lofoten, the corresponding Subboreal/Subatlantic transition – or the wet‐shift marking this transition – is dated at c. 2600 cal. a BP. Some wet‐shifts occur just before or just after solar low‐activity periods, but only four of the nineteen wet‐shifts are clearly not temporally connected with periods of low solar activity. Compared with the wet‐shifts in NW European (mainly British Isles) bogs, there are more frequent wet‐shifts in northern Norway. Compared with other peat cores in northern Norway, especially for the interval 6500–5000 cal. a BP, Lofoten deviates by its lack of wet‐shifts. As in England, Scotland and Ireland, there is regional variability in the temporal formation of wet‐shifts in northern Norway.  相似文献   

14.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The Holocene sediment of Lago Piccolo di Avigliana (Piedmont, Italy, 356 m a.s.l.) was dated by 14C and analysed for pollen to reconstruct the vegetation history of the area. The early‐ and mid‐Holocene pollen record shows environmental responses to centennial‐scale climatic changes as evidenced by independent palaeoclimatic proxies. When human impact was low or negligible, continental mixed‐oak forests decreased at ca. 9300 BC in response to the early‐Holocene Preboreal climatic oscillation. Abies alba expanded in two phases, probably in response to higher moisture availability at ca. 6000 and ca. 4000 BC , while Fagus expanded later, possibly in response to a climatic change at 3300 BC . During and after the Bronze Age five distinct phases of intensified land use were detected. The near synchroneity with the land‐use phases detected in wetter regions in northern and southern Switzerland points to a common forcing factor in spite of cultural differences. Increasing minerogenic input to the lake since 1000 BC coincided with Late Bronze—Iron Age technical innovations and probably indicate soil erosion as a consequence of deforestation in the lake catchment. The highest values for cultural indicators occurred at 700–450 and at 300–50 BC , coinciding with periods of high solar activity (inferred from Δ14C). This suggests that Iron Age land use was enhanced by high solar activity, while re‐occupation of partly abandoned areas after crises in earlier periods match better with the GRIP stable isotope record. On the basis of our data and comparison with independent palaeoclimatic proxies we suggest that precipitation variation was much more important than temperature oscillations in driving vegetation and societal changes throughout the Holocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The peatlands of northern Scotland (one of the largest and most intact areas of blanket bog in the world) contain a rare widespread horizon of subfossil pine in stratigraphic context. Eighteen bog pine from three new sites are incorporated into a mean Neolithic pine chronology now composed of subfossil pine from 12 sites, which is tree‐ring‐dated against Irish bog pine chronologies to span 3198–2757 BC. Germination and peaks of radial growth infer drier conditions between 3199 and 3130 BC. Dying‐off phases and depression of growth reflect a change to wetter conditions between 3023 and 3002 BC and a terminal decline of pine between 2809 and 2782 BC. The close synchronization of germination/die‐off phases and major ring‐width variations between sites across this region indicates that the environmental changes are probably triggered by climate change. Twenty‐four bog pine samples remain unmatched. Future multi‐discipline research into this important example of climatic change at the Neolithic/Bronze Age transition is recommended. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
High‐resolution pollen, plant macrofossil and sedimentary analyses from early Holocene lacustrine sediments on the Faroe Islands have detected a significant vegetation perturbation suggesting a rapid change in climate between ca. 10 380 cal. yr BP and the Saksunarvatn ash (10 240±60 cal. yr BP). This episode may be synchronous with the decline in δ18O values in the Greenland ice‐cores. It also correlates with a short, cold event detected in marine cores from the North Atlantic that has been ascribed to a weakening of thermohaline circulation associated with the sudden drainage of Lake Agassiz into the northwest Atlantic, or, alternatively, a period with distinctly decreased solar forcing. The vegetation sequence begins at ca. 10 500 cal. yr BP with a succession from tundra to shrub‐tundra and increasing lake productivity. Rapid population increases of aquatic plants suggest high summer temperatures between 10 450 and 10 380 cal. yr BP. High pollen percentages, concentrations and influx of Betula, Juniperus and Salix together with macrofossil leaves indicate shrub growth around the site during the initial phases of vegetation colonisation. Unstable conditions followed ca. 10 380 cal. yr BP that changed both the upland vegetation and the aquatic plant communities. A decrease in percentage values of shrub pollen is recorded, with replacement of both aquatics and herbaceous plants by pioneer plant communities. An increase in total pollen accumulation rates not seen in the concentration data suggests increased sediment delivery. The catchment changes are consistent with less seasonal, moister conditions. Subsequent climatic amelioration reinitiated a warmth‐driven succession and catchment stabilisation, but retained high precipitation levels influencing the composition of the post‐event communities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A detailed multidisciplinary investigation of intertidal freshwater sediments exposed in the north of the Bay of Skaill, Mainland Orkney, Scotland, have revealed a complex sedimentary sequence. This provided evidence for dynamic coastal environmental changes in the area since the mid‐Holocene. Freshwater ponds developed on glacial sediments ca. 6550 ± 80 yr BP (cal. bc 5590–5305). From ca. 6120 ± 70 yr BP (cal. bc 5040–4855), these were infilled by blown sand from the distal edge of a dune ridge located to the west. Thereafter, a series of sand‐blow events alternating with periods of quiescence occurred until ca. 4410 ± 60 yr BP (cal. bc 3325–2900). Between ca. 5240 ± 160 and 4660 ± 80 yr BP (cal. bc 4370–3115), pollen and charcoal records show evidence of anthropogenic activities, associated with the nearby Neolithic settlement of Skara Brae. Agriculture was probably affected by recurrent sand movement and widespread deposition of calcium carbonate in the hinterland of the bay. Machair development between ca. 6100 and 5000 yr BP (cal. bc 5235–3540) corresponds to a mid‐Holocene phase of dune formation recorded elsewhere in northwest Europe. The more recent and progressive formation of the bay has probably been related to increasing external forcing via storminess, long‐term relative sea‐level change and sediment starvation within this exposed environment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   

20.
Two new peat‐based climate records from Ireland covering the late Holocene are presented. The sequences are dated by a strong chronological framework formed by AMS radiocarbon dates and SCPs. Three proxy indicators (testate amoebae, macrofossils and humification) have been determined allowing the limitations and strengths of each to be identified and utilised to provide a bog surface wetness (BSW) record for both sites. Age–depth models take into account the potential for accumulation rates to vary with bog vegetation. The records from each site have been used to derive a combined BSW record that displays changes to a wetter/cooler climate from ca. AD 30 (1920 BP), ca. AD 310 (1640 BP), ca. AD 805 (1145 BP), ca. AD 1040 (910 BP) and ca. AD 1300 (650 BP). Changes follow closely those identified in a northern Britain composite BSW record and largely correspond with lake‐level data in central France suggesting the main changes in water balance were coherent over a large region. Correspondence with increases in IRD and slower Iceland‐Scotland Overflow Water (ISOW) suggests that these changes were related to oceanic forcing influencing the track of dominant westerly air flow over Ireland. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号