首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have modeled the magnetosphere by superimposing a dipole field, a uniform field and a perturbation field due to a simple current system. This current system consists of a ring current in the neutral line of the dipole plus uniform fields, together with vertical currents representing field-aligned currents to the neutral line. The current circuit is closed by two additional ring currents above and below the equatorial plane representing distributed adiabatic perpendicular currents. This system produces many magnetospheric features including a magnetopause, bending of magnetic field lines in the anti-solar direction, a magnetotail, and cusps on the day-side of the Earth. Our aim is to demonstrate that it is not necessary to think of the magnetic field topology as being caused by the flowing plasma carrying field lines. The fundamental physical problem is to derive the current system from the self-consistent interaction of the solar-wind and magnetospheric plasmas and fields.  相似文献   

2.
A quantitative magnetospheric magnetic field model has been calculated in three dimensions. The model is based on an analytical solution of the Chapman-Ferraro problem. For this solution, the magnetopause was assumed to be an infinitesimally thin discontinuity with given geometry. The shape of the dayside magnetopause is in agreement with measurements derived from spacecraft boundary crossings.The magnetic field of the magnetopause currents can be derived from scalar potentials. The scalar potentials result from solutions of Laplace's equation with Neumann's boundary conditions. The boundary values and the magnetic flux through the magnetopause are determined by all magnetic sources which are located inside and outside the magnetospheric cavity. They include the Earth's dipole field, the fields of the equatorial ring current and tail current systems, and the homogeneous interplanetary magnetic field. In addition, the flux through the magnetopause depends on two constants of interconnection which provide the possibility of calculating static interconnection between magnetospheric and interplanetary field lines. Realistic numerical values for both constants have been derived empirically from observed displacements of the polar cusps which are due to changes in the orientation of the interplanetary field. The transition from a closed to an open magnetosphere and vice versa can be computed in terms of a change of the magnetic boundary conditions on the magnetopause. The magnetic field configuration of the closed magnetosphere is independent of the amount and orientation of the interplanetary field. In contrast, the configuration of the open magnetosphere confirms the observational finding that field line interconnection occurs primarily in the polar cusp and high latitude tail regions.The tail current system reflects explicitly the effect of dayside magnetospheric compression which is caused by the solar wind. In addition, the position of the plasma sheet relative to the ecliptic plane depends explicitly on the tilt angle of the Earth's dipole. Near the tail axis, the tail field is approximately in a self-consistent equilibrium with the tail currents and the isotropic thermal plasma.The models for the equatorial ring current depend on the Dst-parameter. They are self-consistent with respect to measured energy distributions of ring current protons and the axially symmetric part of the magnetospheric field.  相似文献   

3.
The magnetospheric plasma convection is studied, taking into account the finite conductivity along magnetic field lines. Field-aligned currents flowing at the inner boundary of the magnetospheric plasma sheet give rise to parallel electric fields which insignificantly affect the convection on the ionospheric level but change drastically the convection system in the magnetosphere. Intense azimuthal convective streams arise along both sides of the plasma sheet boundary. A part of convection lines appears to be completely closed in the inner magnetosphere.  相似文献   

4.
Isointensity contours of 630 nm auroral emission are traced into the magnetosphere, using two different empirical magnetic field models, the Mead-Fairfield model, and the Hedgecock-Thomas model. The auroral data are for a specific ISIS-II satellite pass, and so the starting points are expressed in geographic latitude and longitude coordinates, at a specific universal time. The magnetic field models are constructed from satellite magnetometer measurements, and those used correspond to magnetically quiet times. The projections are found to agree reasonably well with direct plasma measurements of the plasma sheet. The projections of the dayside contour connect to widely different regions of the magnetosphere, providing an interpretation that is consistent with observations of the dayside aurora. It is concluded that field line projections of the aurora into the magnetosphere using these models is a valid procedure, but only under quiet-time conditions.  相似文献   

5.
A mechanism is presented whereby the rate of energy dissipation in the magnetosphere is controlled by the particle density in the plasma sheet in the near geomagnetic tail. The mechanism is based on a model in which the plasma sheet is sustained by injection of solar-wind particles into the dayside magnetosphere. The efficiency of the injection is controlled by solarwind parameters, in particular, the north-south component of the interplanetary magnetic field; the maximum injection rate occurs when the interplanetary field is northward. During geomagnetically quiet times, this source balances the loss of particles from the edges of the tail current sheet. If the dayside source rate is reduced (e.g. by a southward-turning interplanetary magnetic field), then the plasma sheet is depleted and the rate of magnetic merging is enhanced in the earthward portion of the tail current sheet. This period of steadily-enhanced merging is associated with the growth phase, i.e. the period of enhanced magnetospheric convection for about one hour preceding the breakup of a polar magnetic or auroral substorm. The breakup can be understood as the result of the collapse of a portion of the tail current sheet following the local depletion of the plasma sheet.  相似文献   

6.
This report investigates the suggestion that the pattern of plasma convection in the polar cleft region is directly determined by the interplanetary electric field (IEF). Owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents centered at noon. The effects of the hypothesized IEF driven cleft current systems on polar cap ionospheric plasma convection are investigated through a series of numerical simulations. The simulations demonstrate that this simple electrodynamic model can account for the narrow “throats” of strong dayside antisunward convection observed during periods of southward interplanetary magnetic field (IMF) as well as the sunward convection observed during periods of strongly northward IMF. Thedawn-dusk shift of polar cap convection which is related to the By component of the IMF is also accounted for by the model.  相似文献   

7.
Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name “magnetopause” to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ∼250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ∼95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar maximum conditions. These have all occurred during extreme solar conditions.  相似文献   

8.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

9.
During the first and second Mercury flyby the MESSENGER spacecraft detected a dawn side double-current sheet inside the Hermean magnetosphere that was labeled the “double magnetopause” (Slavin, J.A. et al. [2008]. Science 321, 85). This double current sheet confines a region of decreased magnetic field that is referred to as Mercury’s “dayside boundary layer” (Anderson, M., Slavin, J., Horth, H. [2011]. Planet. Space Sci.). Up to the present day the double current sheet, the boundary layer and the key processes leading to their formation are not well understood. In order to advance the understanding of this region we have carried out self-consistent plasma simulations of the Hermean magnetosphere by means of the hybrid simulation code A.I.K.E.F. (Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K., Pringle, G.J. [2011]. Comput. Phys. Commun. 182, 946–966). Magnetic field and plasma results are in excellent agreement with the MESSENGER observations. In contrast to former speculations our results prove this double current sheet may exist in a pure solar wind hydrogen plasma, i.e. in the absence of any exospheric ions like sodium. Both currents are similar in orientation but the outer is stronger in intensity. While the outer current sheet can be considered the “classical” magnetopause, the inner current sheet between the magnetopause and Mercury’s surface reveals to be sustained by a diamagnetic current that originates from proton pressure gradients at Mercury’s inner magnetosphere. The pressure gradients in turn exist due to protons that are trapped on closed magnetic field lines and mirrored between north and south pole. Both, the dayside and nightside diamagnetic decreases that have been observed during the MESSENGER mission show to be direct consequences of this diamagnetic current that we label Mercury’s “boundary-layer-current“.  相似文献   

10.
We discuss the peculiarities of fast magnetic reconnection in the essentially nonequilibrium magnetosphere of a compact relativistic object: a neutron star, a magnetar, a white dwarf. Such a magnetosphere is produced by the interaction of a large-amplitude shock wave with a strong stellar magnetic field. We present an analytical solution of the generalized two-dimensional problem on the magnetosphere’s structure, the shape of its boundary, and the direct and reverse currents in a reconnecting current sheet. The uncompensated magnetic force acting on the reverse current is determined. Characteristic parameters of the nonequilibrium magnetosphere of compact stellar objects are estimated. We show that the excess magnetic energy of the magnetosphere is comparable to the mechanical energy brought into it by the shock at the instant of impact. The possibility of particle acceleration to enormous energies is discussed.  相似文献   

11.
In the companion paper (Lam and Rostoker, 1978) we have shown that Pc 5 micropulsations are intimately related to the behaviour and character of the westward auroral electrojet in the morning sector. In this paper we show that Pc 5 micropulsations can be regarded as LC-oscillations of a three-dimensional current loop involving downward field-aligned current flow near noon, which diverges in part to form the ionospheric westward electrojet and returns back along magnetic field lines into the magnetosphere in the vicinity of the ionosphere conductivity discontinuity at the dawn meridian. The current system is driven through the extraction of energy from the magnetospheric plasma drifting sunwards past the flanks of the magnetosphere in a manner discussed by Rostoker and Boström (1976). The polarization characteristics of the pulsations on the ground can be understood in terms of the effects of displacement currents of significant intensity which flow near the F-region peak in the ionosphere and induced currents which flow in the earth. These currents significantly influence the magnetic perturbation pattern at the Earth's surface. Model current system calculations show that the relative phase of the pulsations along a constant meridian can be explained by the composite effect of oscillations of the borders of the electrojet and variations in the intensity of current flow in the electrojet.  相似文献   

12.
Some new ideas on the interaction of the solar wind with the magnetosphere are brought forward. The mechanism of reflection of charged particles at the magnetopause is examined. It is shown that in general the reflection is not specular but that a component of momentum of the particle parallel to the magnetopause changes. A critical angle is derived such that particles whose trajectories make an angle less than it with the magnetopause enter the magnetosphere freely, so transferring their forward momentum to it. Spatially or temporally non-uniform entry of charged particles into the magnetosphere causes electric fields parallel to the magnetopause which either allow the free passage of solar wind across it or vacuum reconnection to the interplanetary magnetic field depending on the direction of the latter. These electric fields can be discharged in the ionosphere and so account qualitatively for the dayside agitation of the geomagnetic field observed on the polar caps. The solar wind wind plasma which enters the magnetosphere creates (1) a dawn-dusk electric field across the tail (2) enough force to account for the geomagnetic tail and (3) enough current during disturbed times to account for the auroral electrojets. The entry of solar wind plasma across the magnetosphere and connection of the geomagnetic to interplanetary field can be assisted by wind generated electric field in the ionosphere transferred by the good conductivity along the geomagnetic field to the magnetopause. This may account for some of the observed correlations between phenomena in the lower atmosphere and a component of magnetic disturbance.  相似文献   

13.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

14.
Particle trapping by tangential gradients at the magnetopause is investigated for the case of a tangential discontinuity and taking into account an external magnetosheath magnetic field. Such a field causes a deflection of the reflected particle back to the magnetopause and thus enhances the chances of the particle to be captured by the magnetosphere after having travelled a certain finite distance down the magnetopause. The trapping angle and distances are calculated. Assuming a drifting Maxwellian for the magnetosheath plasma, we estimate that about 5% of that part of the magnetosheath plasma which comes into contact with the magnetopause can enter the dayside magnetopause during the first encounter. After multiple gyrations, about 30% of these particles may be trapped in the magnetosphere.  相似文献   

15.
Simultaneous measurements of hot boundary layer plasma from PROGNOZ-7 and particle precipitation from the TIROS/NOAA satellite in nearly magnetically conjugate regions have been used to study the dynamo process responsible for the formation of high latitude, early afternoon, auroral arcs.

Characteristic for the PROGNOZ-7 observations in the dayside boundary layer at high latitudes is the frequent occurrence of regions with injected magnetosheath plasma embedded in a “halo” of antisunward flowing magnetosphere plasma. The injected magnetosheath plasma have several features which indicate that it also acts as a local source of EMF in the boundary layer. The process resembles that of a local MHD dynamo driven by the excess drift velocity of the injected magnetosheath plasma relative to the background magnetospheric plasma.

The dynamo region is capable of driving field-aligned currents that couple to the ionosphere, where the upward current is associated with the high latitude auroral arcs.

We demonstrate that the large-scale morphology as well as the detailed data intercomparison between PROGNOZ-7 and TIROS-N both agree well with a local injection of magnetosheath plasma into the dayside boundary layer as the main dynamo process powering the high-latitude, early afternoon auroral arcs.  相似文献   


16.
Studies of the boundary layers in the vicinity of the Earth's dayside magnetopause are important in determining the nature of the processes which couple the magnetosphere to the flowing solar wind, thereby driving magnetospheric convection. In this paper we examine theoretically the magnetic field and plasma properties expected in the boundary regions for various models involving either diffusion or reconnection at the boundary. For diffusion models the transport of magnetosheath momentum across the magnetopause will result in field shears on either side of the boundary, the field rotations being in opposite senses on either side relative to the undisturbed fields. The directions of these rotations depend upon location at the magnetopause relative to the momentum transfer region and to the noon meridian. In reconnection models the effect of the tension of the open boundary layer field lines must be taken into account in addition to the magnetosheath flow, but on the super-Alfvénic flanks of the magnetosphere the latter still dominates, so that qualitatively similar effects will occur in the two models. More detailed, quantitative or statistical studies are then required to distinguish the two models in this regime. In the sub-Alfvénic dayside region, however, open field tension effects will dominate in reconnection models such that boundary layer field and plasma properties will then be determined mainly by the magnetosheath magnetic field configuration. In particular the East-West flow in the magnetospheric boundary layer will be controlled largely by the East-West field in the magnetosheath, leading to flow reversals across the magnetopause in some quadrants of the magnetopause. This behaviour is directly related to the Svalgaard-Mansurov effect and is a signature unique to reconnection models. The boundary layer fields are also expected to tilt towards the field on the opposite side of the boundary in these models on the dayside. “Toward” tilting can also occur in this regime in diffusion models, but “away” tilting, a signature unique to dayside diffusion, should also occur equally frequently. Finally, we briefly discuss previously published high-resolution ISEE 1 and 2 data from the boundary regions in the light of our results. We find that “toward” tilting generally occurs in boundary region crossings previously identified as being reconnection-associated and we present some examples in which the above unique reconnection signature has been observed. During impulsive FTE-like events, however, the field may tilt in either direction, possibly as a result of field line twists, thus complicating our simple picture in this case. We also show that the “reverse draping” observations presented by Hones et al. (1982) approximately satisfy the open magnetopause stress balance conditions.  相似文献   

17.
We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere-ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50RJ in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40RJ, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30RJ cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.  相似文献   

18.
The possible avenues for photoelectron transport were determined during southern hemisphere winter at Mars by using a mapping analysis of the theoretical magnetic field. Magnetic field line tracing was performed by superposing two magnetic field models: (1) magnetic field derived from a three-dimensional (3D) self-consistent quasi-neutral hybrid model which does not contain the Martian crustal magnetic anomalies and (2) a 3D map of the magnetic field associated with the magnetic anomalies based on Mars Global Surveyor magnetic field measurements. It was found that magnetic field lines connected to the nightside of the planet are mainly channeled within the optical shadow of the magnetotail whereas magnetic field lines connected to the dayside of the planet are observed to form the remainder of the magnetosphere. The simulation suggests that the crustal anomalies create “a magnetic shield” by decreasing the region near Mars which is magnetically connected to the Martian magnetosphere. The rotation of Mars causes periodic changes in magnetic connectivity, but not to qualitative changes in the overall magnetic field draping around Mars.  相似文献   

19.
Reconnection involves singular lines called X-lines on the day and night sides of the magnetosphere, and the reconnection rate is proportional to the component of the electric field along the X-line. Although there is some indirect support for this model, nevertheless direct support is totally lacking. However, there are two distinct pieces of clearly contradictory observational evidence on the dayside. First is the failure to account for the implied energy dissipation by the magnetopause current, over 1011 W, which should be easily observable as heating or enhanced flow of the plasma near the magnetopause. In marked contrast to this prediction, HEOS-2 satellite data reveal a plasma with decreased energy density and reduced flow. Second, the boundary of closed magnetic field lines is in the wrong location. In the reconnection process the plasma outflow would cut across open field lines toward higher latitudes; there should be a band of open field lines equatorward of the cleft. Observations of trapped energetic particles indicate closed field lines within the entry layer and cleft. Either one of these pieces of evidence is sufficient by itself to require drastic revision, even rejection, of the reconnection model. There is also contradictory evidence on the night side. The last closed field line capable of trapping energetic particles is poleward of auroral arcs. The implication is that the X-line is at the distant magnetopause, and not in the plasma sheet. Consequently, even if the reconnection process were operative at the nightside X-line, it would be isolated from steady state plasma sheet and auroral processes. On the other hand, substorm phenomena, in which stored magnetic energy is converted into particle kinetic energy, necessarily involve an induced electric field; that is excluded in theories of the reconnection process in which it is assumed that curl E = 0. Nevertheless, the observed easy access of energetic solar flare particles to the polar caps, and especially the preservation of interplanetary anisotropies as differences between the two polar caps, argues strongly for an open magnetosphere, with interconnection between geomagnetic and inter-planetary magnetic field lines. It is suggested that the resolution of this apparent paradox involves electric fields parallel to the magnetic field lines somewhere on the dawn and dusk sides of the magnetosphere, with an equipotential dayside magnetopause.  相似文献   

20.
Analysis of global hybrid simulations of Mercury’s magnetosphere-solar wind interaction is presented for northward and southward interplanetary magnetic field (IMF) orientations in the context of MESSENGER’s first two encounters with Mercury. The global kinetic simulations reveal the basic structure of this interaction, including a bow shock, ion foreshock, magnetosheath, cusp regions, magnetopause, and a closed ion ring belt formed around the planet within the magnetosphere. The two different IMF orientations induce different locations of ion foreshock and different magnetospheric properties: the dayside magnetosphere is smaller and cusps are at lower latitudes for southward IMF compared to northward IMF whereas for southward IMF the nightside magnetosphere is larger and exhibits a thin current sheet with signatures of magnetic reconnection and plasmoid formation. For the two IMF orientations the ion foreshock and quasi-parallel magnetosheath manifest ion-beam-driven large-amplitude oscillations, whereas the quasi-perpendicular magnetosheath shows ion-temperature-anisotropy-driven wave activity. The ions in Mercury’s belt remain quasi-trapped for a limited time before they are either absorbed by Mercury’s surface or escape from the magnetosphere. The simulation results are compared with MESSENGER’s observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号