首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The observed periodicity in the whistler occurrence rate recorded at our low latitude ground station at Varanasi (geomagnetic latitude, 14°55'N) is interpreted in terms of duct life time at lowL values. Power spectrum analysis of the whistler data yields a period of about 50 min for the growth and decay of ducts. Further dispersion analysis of the whistlers has qualitatively confirmed the existence of separate ducts during the period of observations.  相似文献   

2.
A whistler study has been made of plasma convection within the plasmasphere during a transition from steady moderate geomagnetic activity to quiet conditions. Continuous whistler data recorded at Sanae, Antarctica (L= 3.98) for the period 0400 UT, 10 July to 0400 UT, 11 July 1973 have been analyzed in 15 min intervals.This study has revealed two distinct bulges in the plasmasphere centred on 1700 and 0100 UT. The bulges appear to result from the outward flow of plasma rather than the addition of new plasma. We tentatively interpret the late bulge at 0100 UT as being the duskside bulge of earlier studies rotated into the midnight region. In this bulge, plasma above L = 3.8 appears to convect outwards to form the bulge whereas plasma at lower L-values is relatively undisturbed. For the early bulge (1700 UT) the plasma convection pattern is similar over all observable L-values and closely reflects the shape of the estimated plasmapause in that region. Comparison of the bulges, with those obtained by Carpenter (1966) suggests that the onset of quiet conditions results in a general displacement of the bulges in an eastward direction by about 3 hr.  相似文献   

3.
On 26 July 1967, a magnetically quiet day (ΣKp = 12?) with high whistler activity at Halley Bay, it was found possible, by measurement of whistler nose-frequency and dispersion and the bearings of the whistler exit points, to make a detailed study of the magnetospheric structure associated with the whistler ducts.During the period 0509–2305 UT most of the exit points of whistlers inside the plasmasphere were situated along a strip about 100km wide passing through Halley Bay in an azimuthal direction 30°E of N between 57° and 62° invariant latitude. A mechanism which can give rise to such a well-defined locus which co-rotates with the Earth is not clear. Nevertheless, it does appear that the locus coincides with the contour of solar zenith angle 102° at 1800 UT 25 July. This was also the time of occurrence of a sub-storm and it is suggested that the magnetospheric structure was initiated by proton precipitation along the solar zenith angle 102° contour.At mid-day knee-whistlers observed outside the plasmapause had exit points which were closely aligned along an L-shell at an invariant latitude of 62.5°. They exhibited a marked variation (~ 3:1) in electron tube content over about 12° of invariant longitude and a drift of about 8 msec?1 to lower L-shells.Throughout the period of observation the plasmapause lay about 2° polewards of the mean position found by Carpenter (1968) for moderately disturbed days.  相似文献   

4.
Extremely low frequency (ELF)/Very low frequency (VLF) hiss is whistler mode wave that interacts with energetic electrons in the magnetosphere. The characteristics features of ELF/VLF hiss observed at low latitude ground station Jammu (Geomag. lat. 22°16′ N, L=1.17) are reported. It is observed that most of hiss events first propagate in ducted mode along higher L-values (L = 4–5), after reaching lower edge of ionosphere excite the Earth-ionosphere waveguide and propagate towards equator to be received at low-latitude station Jammu. To understand the generation mechanism of ELF/VLF hiss, incoherent Cerenkov radiated power from the low-latitude and mid-latitude plasmasphere are evaluated. Considering this estimated power as an input for wave amplification through wave–particle interaction, the growth rate and amplification factor is evaluated which is too small to explain the observed wave intensity. It is suggested that some non-linear mechanism is responsible for the generation of ELF/VLF hiss.  相似文献   

5.
6.
This paper describes occurrence probabilities and patterns of trans-equatorial proton (TEP), deuteron (TED) and helium (TEH) whistler from the ISIS-2 satellite in time compressed dynamic spectra. It is shown that the TEP whistlers have high occurrence probability in an active solar period, while the TED whistler has low occurrence probability. In a quiet solar period, the TEP whistler has a relatively lower occurrence probability than the TED whistler. The TEP whistler in a quiet solar period shows a strong seasonal variation. That is a higher occurrence probability in the winter than in the summer in the Northern Hemisphere. The curve of occurrence probability of the TED whistler has a valley (no occurrence) at the noon in a solar active period. The minimum occurrence probabilities, which depend on geomagnetic activity appear at about KP = 4-5. These phenomena seem to be explained by using the bouncing surface diagram of multicomponent and inhomogeneous plasmas with various proton density. The spectral pattern of trans-equatorial ion whistlers and calculation of an approximate equation with regard to deuteron effect show that relative proton densities to electrons NP/Ne decrease with increasing solar activity.  相似文献   

7.
The development of an auroral absorption substorm has been studied using riometer measurements in the northern hemisphere. In the events studied, the onset is preceded by an absorption bay which begins to develop 1?112h before the onset. The bay may occur between L-values 3–19 and can cover as much as 150° of geomagnetic longitude, generally in the same longitudinal sector where the substorm breaks up and to the west of it. Whereas the substorm breaks up at or near the midnight meridian, the preceding bay may, in some geophysical conditions, appear in the afternoon sector. The preceding bay moves southward with a velocity between 60 and 600 ms?1, intensifying during the movement. This equatorward movement is consistent with an E × B drift in a cross-magnetotail electric field of between 0.5 and 1 mV m?1. The absorption at the onset exceeds that in the bay, and in the sector of break up the absorption shows a minimum just before the onset; to the west-of the break up the preceding bay continues its southward movement. In 14 cases studied, the sharp onset moved to the west with a velocity of 1–31 km s?1, median 6 km s?1. The onset was seen at higher L-values to the west than in the break-up sector. This applied also to the preceding bay. Whereas most onsets showed westward movement, in only about half of the cases studied was there movement towards the east. The injection area affected during the first minute of the onset was typically 1–2 L-value units, but as much as 30° of geomagnetic longitude. The onset later spread to cover 1–10 L-value units, and up to 130° of longitude. The contouring method used in the analysis of the data from the riometer is described in the Appendix.  相似文献   

8.
This study explores the relationship between the sunspot number (SSN) and the ionospheric foF2. It is of interest to locate the SSN value at which the foF2 values are saturated. A regression model is built based on the data of the strictly rise period of the 21st solar cycle recorded by eight ionosonde stations scattering roughly between 40°N and 40°S geomagnetic latitude. Results show that clear saturation features appear around the equatorial anomaly crest region.  相似文献   

9.
The downward propagation of ELF waves (100–700 Hz) in the ionosphere is studied by means of a generalised multiple-reflection full-wave method. It is shown that for the production of an ion cutoff whistler the incident wave-normal must point inwards (equatorwards) with respect to the vertical, the ion cutoff whistler conversion coefficient RRL being a maximum when the reflected wave normal lies close to the geomagnetic field direction at the crossover level.For a low frequency cutoff of ELF noise to exist, the incident wave-normals at the crossover level must lie outside a ‘cone of penetration’ of ~40° semi-vertical angle, whose axis coincides with the geomagnetic field line. For propagation in the magnetic meridian plane, total reflection of downgoing whistlers is obtained either for large outward (poleward) incident angles, with reflection heights generally above the crossover level and possibly even above the gyrofrequency level, or else for inward (equatorward) wave-normal directions, in which case the reflection process usually occurs below the crossover level, and involves an R to L mode conversion on the downgoing path.Analysis of a scatter plot of the lower cutoff frequencies of ELF noise as a function of altitude and latitude shows that widely varying abundances must be postulated at all latitudes in order to explain the observations.  相似文献   

10.
《Planetary and Space Science》2007,55(10):1218-1224
In this paper, we report the results derived from a statistical analysis of whistlers recorded at Varanasi during the period January 1990–December 1999. The monthly occurrence rate shows a maximum during January to March. In order to study the role of geomagnetic disturbance on the whistler occurrence rate, we have used the KP index and its variation. It is found that the occurrence probability monotonically increases with ∑KP (daily sum) values. It is found that, when ∑KP>20, the occurrence rate is greater than the average value, in good agreement with results reported by other workers. In addition, we also present the probability of the observation of whistlers during weak/intense geomagnetic storms and also during the main phase and recovery phase of geomagnetic storms.  相似文献   

11.
Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16°6′.N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency.  相似文献   

12.
We have modelled the plasmaspheric density distribution for a range of solar cycle, seasonal and diurnal conditions with a magnetic flux tube dependent diffusive equilibrium model by using experimentally determined values of ionospheric parameters at 675 km as boundary conditions.Data is presented in terms of plasmaspheric H+ and He+ density contours, total flux tube content and equatorial plasma density for a range of L-values from 1.15 to 3.0. The variation of equatorial density with L-value shows good agreement with the 1L4 dependence observed experimentally.The results show that the model predicts larger solar cycle and diurnal variation in equatorial plasma density than observed using whistler techniques. However, the whistler method requires a model to deduce the equatorial density and is therefore open to interpretation.Seasonal variations are rather artifical since in this general model we have not attempted to match equatorial densities for flux tubes emanating from the winter and summer hemispheres.  相似文献   

13.
The combination of a small inclination of the orbit (~4°) with the tilt angle (~11°) of the Earth's magnetic dipole axis enabled the S3-A satellite (Explorer 45) to make simultaneous observations of magnetospheric VLF-emissions and the associated enhancement of ring current electrons not only at the magnetic equator but also up to 15° geomagnetic latitudes. Microdensitometer scanning of the wideband data of these emissions reveals that the band of missing emission in the off-equatorial whistler mode emissions (chorus) appears at fHo2 and that the intensities of the off-equatorial emission above fHo2 are very weak in contrast to those of the near equatorial emissions, where fHo2 is the equatorial electron gyrofrequency corresponding to the local gyrofrequency fH at the satellite. Ray-tracing of whistler mode waves produced by the enhanced ring-current electrons at the geomagnetic equator just outside of the plasmapause has shown that some of these waves are reflected from high latitudes back to the Equator inside the source region. This process had been previously speculated to explain the formation of the bimodal intensity distribution with a gap at half the gyrofrequency (the two-band chorus) in the equatorial emission data. The intensities of those reflected waves, however, are shown to be insufficient to explain the observed emissions below fHo2 at the Equator. These results indicate that the superposition of two types of emissions produced by the same processes but from different locations is not the main mechanism for the formation of the two-band chorus and that the dominant sources of these choruses are located around ± 5° geomagnetic latitude.  相似文献   

14.
Observations of aurorae borealis at low latitudes are very rare and are clearly associated with strong geomagnetic storms. Morphologically, they are characterized by a diffuse red colour with no rapid motions. The main aim of this paper is to analyse two hitherto ignored aurorae that were observed at two low-latitude sites, Tenerife (28°N 18°W) and Mexico City (19°N 99°W), in 1770 and 1789, respectively. These observations can give supplementary information about the level of solar activity at those times where direct solar observations were rather scarce. Studying also the behaviour of the heliosphere during this period using different proxies, we find that the open magnetic field better describes auroral occurrences. The variation over time in geomagnetic latitude at the two sites is also calculated.  相似文献   

15.
Latitudinal characteristics of ELF hiss in mid- and low-latitudes have been statistically studied by using ELF/VLF electric field spectra (50 Hz-30 kHz) from ISIS-1 and -2 received at Kashima station, Japan from 1973 to 1977. Most ISIS ELF/VLF data observed in mid- and low-latitude include ELF hiss at frequencies below a few kHz. The ELF hiss has the strongest intensity among VLF phenomena observed by the ISIS electric dipole antenna in mid- and low-latitudes, but the ELF hiss has no rising structure like the chorus in the detailed frequency-time spectrum. The ELF hiss is classified into the steady ELF hiss whose upper frequency limit is approximately constant with latitude and the ELF hiss whose upper frequency limit increases with latitude. These two types of ELF hiss occur often in medium or quiet geomagnetic activities. Sometimes there occurs a partial or complete lack of ELF hiss along an ISIS pass.Spectral shape and bandwidth of ELF hiss in the topside ionosphere are very similar to those of plasmaspheric hiss and of inner zone hiss. The occurrence rate of steady ELF hiss is about 0.3 near the geomagnetic equator and decreases rapidly with latitude around L = 3. Hence it seems likely that ELF hiss is generated by cyclotron resonant instability with electrons of several tens of keV in the equatorial outer plasmasphere beyond L = 3.Thirty-seven per cent of ELF hiss events received at Kashima station occurred during storm times and 63% of them occurred in non-storm or quiet periods. Sixty-seven per cent of 82 ELF hiss events during storm times were observed in the recovery phase of geomagnetic storms. This agrees with the previous satellite observations of ELF hiss by search coil magnetometers. The electric field of ELF hiss becomes very weak every 10 s, which is the satellite spin period, in mid- and low-latitudes, but not near the geomagnetic equator. Ray tracing results suggest that waves of ELF hiss generated in the equatorial outer plasmasphere propagate down in the electrostatic whistler mode towards the equatorial ionosphere, bouncing between the LHR reflection points in both the plasmaspheric hemispheres.  相似文献   

16.
Explorer 26 magnetic field data in the magnetospheric region of L=3?6 and LT 1100–1500 hr with geomagnetic latitude range ?6° to 27° have been analyzed for studying nineteen SI and SC events. Most of the SI events observed in the magnetosphere at less than 15° geomagnetic latitude are compressional with magnetic perturbations along the ambient field. Elliptic polarizations with magnetic field variations in all three components have been observed between 10° and 27° geomagnetic latitude. Polarization directions have been shown to have similar patterns to those observed in the surface magnetic field data. Afternoon LT zone data in the magnetosphere indicate polarization patterns in general agreement with the results of Wilson and Sugiura (1961) obtained earlier from surface observations. The SI/SC perturbations are also qualitatively shown to be related to changes in the interplanetary magnetic field observed beyond 1 a.u.  相似文献   

17.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

18.
Geomagnetic pulsations, in the period range 10–150 sec, have been analysed from five stations; Eskdalemuir (L = 3.1), Lerwick (L = 4.0), St. Anthony (L = 4.9), Sodankyla (L = 5.3) and Tromsø (L = 6.6). The results of 12 observatory years' worth of data are presented in the form of contour maps showing the frequency of occurrence of the pulsations as a function of Kp index and of local time. The maps show that a ground based observatory is more likely to record shorter period oscillations (pc 3) when the geomagnetic field line linking the station with the southern hemisphere passes through the plasmatrough than when the observatory field line links the plasmasphere. The peak occurrence of pc 3 for the observatories considered is at 08:45 hr ± 1 hr LT and is related to the observatory L value and the average night-time Kp index by the equation, L = 8.1 ? 1.2Kp. At Eskdalemuir, the spectrum is broader band than the other stations and tends to divide into two peaks; the pc 3 (20 sec) peak tends to occur when the plasmapause has moved in close to the observatory; while the pc 4 (60 sec) peak occurs when the Kp values have been lower and the plasmapause is further away at higher latitudes.  相似文献   

19.
During the flight of a Petrel rocket, instrumented by the SRC Radio and Space Research Station with Geiger counters and launched westwards from South Uist, Outer Hebrides, Scotland (L=3.38), a transient increase was observed in the intensity of energetic electrons having pitch angles between 60 and 120°. The increase, by a factor of 20 above the quasi-steady intensity observed throughout the remainder of the flight, occurred in 0.8 sec and was simultaneous for both >45 keV and >110 keV electrons. Recorded ~0.5 sec later, on the ground, was a two-hop whistler. During the enhanced electron intensity event, the entire duration of which was ~6 sec, the four-, six- and eight-hop whistlers were also received. From an analysis of the whistlers' spectrogram, it is concluded that the whistlers were ducted through the magnetosphere along the L=3.3 ±0.1 field line; the electron density in the equatorial plane is found to be 330 ±10 cm?3, a value characteristic of conditions within the plasmapause. It is suggested that these temporally and/or spatially associated phenomena, rather than arising by a chance coincidence, were the result of a gyroresonant interaction between energetic electrons and whistler mode waves moving in opposite directions. For gyroresonance on this field line at the equator, the parallel component of energy of the electrons is 25 keV at 3 kHz in the whistler band, or 100 keV at 1 kHz below it. It is suggested that a magnetospheric event occurred, causing both sudden enhanced electron precipitation and favourable conditions for the propagation and/or amplification of whistlers. A possible explanation is that energetic electrons, having a sufficiently anisotropic distribution function and associated with those injected during an earlier auroral substorm, become unstable via the transverse resonance instability when they drift into the plasmasphere, a region of high density thermal plasma.  相似文献   

20.
The non-ducted whistler propagation in the inner magnetosphere is discussed using the broad-band VLF measurement on board the K-9M-26 rocket launched at 1703 hr JST on 24 August 1969 from Kagoshima Space Center (geomagnetic lat 20°N). A large number of whistlers which seemed to be two-hop whistlers originating in the northern hemisphere were observed. The main features of these whistlers are summarized: (1) their dispersion value is widely scattered in the range 55–75 sec12, (2) their frequency spectra show a broad maximum in the frequency range 2–5 kHz and higher frequency components are likely to disappear. Attempts are made to interpret these properties in terms of ducted or non-ducted propagation. It is then found from the ray tracing studies that the measurements are satisfactorily explained by non-ducted propagation in the inner magnetospheric model with latitudinal density gradient such as the equatorial anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号