首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive the general expression for the potential on a solid sphere immersed in a plasma, showing the dependence of the potential on the radiusa of the sphere ands of the plasma sheath that develops around the sphere. In the limit where the radiusa is much larger than the sheath thicknesss-a we recover from this expression the well-known result for the potential on an infinite wall in contact with a plasma. On the other extreme wheres is much larger thana, we get the result derived by Spitzer (1941) for the potential on spherical grains in the interstellar plasma. Since the surface of the sphere forms a sink for the charged particles, there is a net drift of the plasma towards the surface. The effect of this drift on the potential is examined. Finally, for very small metallic spheres, an effect leading to a revision of the potential is discussed. This effect consists in a lowering of the potential barrier for the electrons due to the image force. The various effects limiting the potential on spheres are discussed.  相似文献   

2.
Low and mid-latitude lower E-region electron temperature profiles which were obtained by means of an insitu probe were collected. Profiles which are discussed here cover the heights of 90–120 km and measurement reliability at these heights is discussed mainly in terms of electrode contamination and aerodynamical heating.Although measurement errors might exist in some of the electron temperature profiles, it is conclusively described that daytime electron temperature is very often much higher than the possible neutral temperature and TeTn is rarely seen.  相似文献   

3.
Two kinetic models for the auroral topside ionosphere are compared. The collisionless plasma distributed along an auroral magnetic field line behaves like a non-Ohmic conducting medium with highly non-linear characteristic curves relating the parallel current density to the potential difference between the cold ionosphere and the hot plasmasheet region. The (zero-electric current) potential difference, required to balance the current carried by the precipitating plasmasheet particles and the current transported by the outflowing ionospheric particles, depends on the ratio nps.e/nth.e and Tps.e/Tth.e of the plasmasheet and ionospheric electron densities and temperatures. When in the E-region the magnetic field lines are interconnected by a high conductivity plasma the resulting field-aligned currents driven by the magnetospheric potential distribution are limited by the integrated Pedersen conductivity of the ionospheric layers. These currents are not related to the parallel electric field intensity as they would be in Ohmic materials. The parallel electric field intensity is necessarily determined by the local quasi-neutrality of the plasma.  相似文献   

4.
Electrostatic charging has given rise to problems on several geostationary spacecraft. This has led to a rigorous electrostatic cleanliness approach in the case of the scientific geostationary satellite GEOS in order to secure correct electric field and low energy plasma measurements. The present paper outlines the relevant charging mechanism, describes a new method for the determination of the equilibrium potential, and reports on actual potential measurements. The potentials observed are very closely related to the actual plasma conditions at the geostationary orbit. It is generally possible to use the potential measurements to characterize the particle population encountered by the spacecraft.Measurements carried out over a period of 4 years are presented by way of examples. A careful analysis shows that the chosen examples are representative and reflect the conditions observed on all other days of the mission. The results lead to the overall conclusion that the equilibrium potential of GEOS in sunlight is always moderately positive and only rarely exceeds + 10 V with respect to ambient space. At no instance in the sunlit portion of the orbit does the spacecraft assume a negative potential. We find that the observed moderate positive equilibrium potential generally is a function of cold plasma density. During the night and early morning part of the orbit we can, however, identify periods where the high energy particle population dictates the equilibrium potential. The electrostatic cleanliness design of GEOS avoids negative charging also under these conditions. In eclipse, a negative potential cannot be avoided but here the electrostatic cleanliness approach chosen for GEOS prevents any differential charging and avoids potentials of several thousand volts which have appeared on other satellites. The cost, in time and effort, of the precautions employed has clearly been justified. The specially developed techniques have since been used on other satellites and the lessons learned have also been applied successfully to operational spacecraft such as METEOSAT 2.  相似文献   

5.
Within the frame work of the circular restricted three-body problem (CR3BP) we have examined the effect of axis-symmetric of the bigger primary, oblateness up to the zonal harmonic J 4 of the smaller primary and gravitational potential from a belt (circular cluster of material points) on the linear stability of the triangular libration points. It is found that the positions of triangular libration points and their linear stability are affected by axis-symmetric of the bigger primary, oblateness up to J 4 of the smaller primary and the potential created by the belt. The axis-symmetric of the bigger primary and the coefficient J 2 of the smaller primary have destabilizing tendency, while the coefficient J 4 of the smaller primary and the potential from the belt have stabilizing tendency. The overall effect of these perturbations has destabilizing tendency. This study can be useful in the investigation of motion of a particle near axis-symmetric—oblate bodies surrounded by a belt.  相似文献   

6.
We have studied a modified version of the classical restricted three-body problem (CR3BP) where both primaries are considered as oblate spheroids and are surrounded by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effects of oblateness of both primaries up to zonal harmonic J 4; together with gravitational potential from the circular cluster of material points on the existence and linear stability of the triangular equilibrium points. It is found that, the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio affected by the oblateness up to J 4 of the primaries and potential from the circular cluster of material points. The coefficient J 4 has stabilizing tendency, while J 2 and the potential from the circular cluster of material points have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near oblate bodies surrounded by a circular cluster of material points.  相似文献   

7.
The collection of charged particles by electrodes in plasmas is controlled by the currentvoltage characteristics of the plasma sheath which forms at the electrode surface. This principle is applied to the steady-state electromagnetic interaction of the solar wind with moon-like bodies, or ‘solid-body’ interactions. In some cases the unipolar dynamo response of an electrically conducting body in the solar wind motional electric field can be controlled by sheath effects. This occurs for highly conducting bodies when the body radiusR is less than a critical valueR c , with the result that no induced bow shock wave can form. For the Moon and MercuryR/R c ?1, so that sheath effects do not limit their unipolar responses. The asteroids are found to be either too cold or too small to maintain steady-state induced magnetospheres. The Martian satellites, the irregular Jovian satellites, and the outer satellites of Saturn also haveR/R c ?1. No bow shock waves should be generated by these bodies, unless they are highly magnetized or have large magnetic permeabilities. Unipolar induction heating of meteorite parent bodies in a primordial enhanced solar wind should not be inhibited by sheath effects, providedR?50 m.  相似文献   

8.
The recently released Planck data have constrained 4-dimensional inflationary parameters even more accurately than ever. We consider an extension of the braneworld model with induced gravity and a non-minimally coupled scalar field on the brane. We constraint the inflation parameters in this setup, by adopting six types of potential, in confrontation with the joint Planck + WMAP9 + BAO data. We show that a potential of the type V(φ)=V 0exp(?βφ) has the best fit with newly released observational data.  相似文献   

9.
It is shown by numerical simulations that enhanced current density can generate double layers, even when the electron drift speed is significantly below the electron thermal speed. The double layer potential is spontaneously produced by the space charge self-consistently developed inside the simulation domain. The particle influxes from the low-potential boundary of our simulation domain are independent of the outfluxes. The potential difference φ0 is shown increase with increasing number density of the injection current. Strong double layers with potential energy 0 ? kT0 (the electron thermal energy) are stably formed when the injection electron current much exceeds the thermal current of ambient electrons. The backscattered and mirrored electrons are found to have stabilizing effects on the current-driven double layers.  相似文献   

10.
We perform the correlation and spectral analysis of phase-space density and potential fluctuations in a model of an open star cluster for various values of the smoothing parameter ? of the force functions in the equations of motion of cluster stars, and compute the mutual correlation functions for the fluctuations of potential U and phase-space density f of the cluster model at different clustercentric distances. We use the Fourier transform of the mutual correlation functions to compute the power spectra and dispersion curves of the potential and phase-space density fluctuations. The spectrum of potential fluctuations proves to be less complex than that of phase-space density fluctuations. The most powerful potential fluctuations are associated with phase-space density fluctuations, and their spectrum lies in the domain of low frequencies ν < 3/τ v.r.; at intermediate and high frequencies (ν > 3/τ v.r.), the contribution of potential fluctuations to those of the phase-space density is small or equal to zero (here τ v.r. is the violent relaxation time scale of the cluster). We find a number of unstable potential fluctuations in the core of the cluster model (up to 30 pairs of fluctuations with different complex conjugate frequencies). We also find and analyze the dependences of the spectra and dispersion curves of phase-space density and potential fluctuations on ?. We find a “repeatability” (significant correlation) of the spectra at some values of parameter ?. The form of the dispersion curve is unstable against small variations of ?. We discuss the astrophysical applications of our results: the break-up in the cluster core of the phase-space density wave running from the cluster periphery toward its center into several waves with frequencies commensurable to that of the external (tidal) influence; emission and reflection of phase-space and potential waves near the cluster core boundary; possible wavelength and phase discretization of the phase-space and potential waves in the cluster model.  相似文献   

11.
We present a fast solver for computing potential and linear force-free fields (LFFF) above the full solar disk with a synoptic magnetic map as input. The global potential field and the LFFF are dealt with in a unified way by solving a three-dimensional Helmholtz equation in a spherical shell and a two-dimensional Poisson equation on the solar surface. The solver is based on a combination of the spectral method and the finite-difference scheme. In the longitudinal direction the equation is transformed into the Fourier spectral space, and the resulting two-dimensional equations in the r?C?? plane for the Fourier coefficients are solved by finite differencing. The solver shows an extremely fast computing speed, e.g., the computation for a magnetogram with a resolution of 180(??)×360(?) is completed in less than 2 s. Even on a high-resolution 600×1200 grid, the solution can be obtained within only about one minute on a single CPU. The solver can potentially be applied directly to the original resolution of observed magnetograms from SDO/HMI for routinely analyzing daily full-disk data.  相似文献   

12.
S. Poluianov  I. Usoskin 《Solar physics》2014,289(6):2333-2342
The present work is a critical revision of the hypothesis of the planetary tidal influence on solar activity published by Abreu et al. (Astron. Astrophys. 548, A88, 2012; called A12 here). A12 describes the hypothesis that planets can have an impact on the solar tachocline and therefore on solar activity. We checked the procedure and results of A12, namely the algorithm of planetary tidal torque calculation and the wavelet coherence between torque and heliospheric modulation potential. We found that the claimed peaks in long-period range of the torque spectrum are artefacts caused by the calculation algorithm (viz. aliasing effect). Also the statistical significance of the results of the wavelet coherence is found to be overestimated by an incorrect choice of the background assumption of red noise. Using a more conservative non-parametric random-phase method, we found that the long-period coherence between planetary torque and heliospheric modulation potential becomes insignificant. Thus we conclude that the considered hypothesis of planetary tidal influence on solar activity is not based on a solid ground.  相似文献   

13.
The influence of free static spherically symmetric quintessence on particle motion in the Schwarzschild-quintessence space-time has been studied by numerical calculation. In the Schwarzschild space-time, the particle motion can be determined by an effective potential. However, this potential is dependent on the quintessence’s state parameter w q . We find that when the quintessence’s state parameter w q is in the range of $[-\frac{1}{3},0]$ , the massive particle’s motion is just like that in the Schwarzschild space-time. And when $-1\leqslant w_{q}<-\frac{1}{3}$ , a maximum unstable circular orbit exists for every L, and no matter how small L is, the scattering state exists, which leads to the accelerating expansion of our universe. The exists of the maximum orbit can even explain why galaxies is in a ball.  相似文献   

14.
We propose a new solution to the η-problem in supergravity using a shift symmetric Kähler potential in the context of the Randall–Sundrum type II model. We focus on a F-term supergravity inflation with a minimal Kähler potential taking into account the radiative corrections. The slow-roll conditions are ensured by the shift symmetry where a very small value of η(η?1) is obtained. In this context, we derive all known spectrum inflationary parameters which are widely consistent with Planck 2015 data for a particular choice of brane tension and coupling constant values. A suitable observational central value of n s=0.96 is also obtained in the case of minimal Kähler potential.  相似文献   

15.
We have investigated an improved version of the classic restricted three-body problem where both primaries are considered oblate and are enclosed by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effect on the number and on the linear stability of the equilibrium locations of the small particle due to both, the primaries’ oblateness and the potential created by the circular cluster. We have drawn the zero-velocity surfaces and we have found that in addition to the usual five Lagrangian equilibrium points of the classic restricted three-body problem, there exist two new collinear points L n1,L n2 due to the potential from the circular cluster of material points. Numerical investigations reveal that with the increase in the mass of the circular cluster of material points, L n2 comes nearer to the more massive primary, while L n1 moves away from it. Owing to oblateness of the bodies, L n1 comes nearer to the more massive primary, while L n2 moves towards the less massive primary. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio influenced by oblateness of the primaries and the potential from the circular cluster of material points. The oblateness and the circular cluster of material points have destabilizing tendency.  相似文献   

16.
We have examined the effects of oblateness up to J 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to J 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < μ < μ c and unstable for \(\mu_{\mathrm{c}} \le \mu \le \frac {1}{2},\) where μ c is the critical mass ratio affected by the oblateness up to J 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient J4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.  相似文献   

17.
We consider tensor–vector theories by varying the space-time–matter coupling constant (varying Einstein velocity) in a spatially flat FRW universe. We examine the dynamics of this model by dynamical system method assuming a ΛCDM background and we find some exact solutions by considering the character of critical points of the theory and their stability conditions. Then we reconstruct the potential V(A 2) and the coupling Z(A 2) by demanding a background ΛCDM cosmology. Also we set restrictions on the varying Einstein velocity to solve the horizon problem. This gives a selection rule for choosing the appropriate stable solution. We will see that it is possible to produce the background expansion history H(z) indicated by observations. Finally we will discuss the behavior of the speed of light (c E) for those solutions.  相似文献   

18.
This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0<μ<μ c and unstable for $\mu_{c}\le\mu\le\frac{1}{2}$ , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.  相似文献   

19.
Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma consisting of negatively charged mobile dust, nonextensive ions following nonextensive q-distribution and two distinct temperature superthermal electrons following superthermal kappa distribution each, is investigated by employing lower and higher order nonlinear equations, namely the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV) and the Gardner equations. The characteristic features of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two superthermal temperature electrons and ions nonextensivity on the basic characteristics of DA K-dV, mK-dV and Gardner solitons have also been investigated. It has been found that the DA Gardner solitons exhibit either negative or positive potential solitons only for q<q c where, q c is the critical value of the nonextensive parameter q. The possible applications of our results in understanding the localized nonlinear electrostatic structures existing in solar atmosphere, Saturn’s magnetosphere etc. (where the tails of the high energetic particles at different temperatures follow power-law like distribution) are also briefly discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号