首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Astronomy& Geophysics》2007,48(4):4.05-4.05
It's one thing to picture weather on other planets in the solar system, quite another to get any idea of conditions on planets orbiting other stars, but that is what researchers using the Spitzer Space Telescope have done.  相似文献   

2.
3.
The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.  相似文献   

4.
刘复刚  王建 《地球物理学报》2014,57(11):3834-3840
对于太阳活动22年周期的成因机制长期存在着争论.本文借助于行星会合指数以及开普勒第三定律,对太阳绕太阳系质心运动周期进行了分析计算.结果发现,太阳绕太阳系质心运动存在22.1826年显著周期,这与太阳磁场变化的22.20年周期相吻合.并从太阳系角动量守恒的角度解释了两者之间的成因联系:在太阳绕太阳系质心运动的准22年周期中,太阳系质心与太阳质心逐步接近而后逐步分离.当两个质心之间的距离接近零的时候,太阳轨道角动量与自转角动量叠加,会导致太阳自转角速度的加快;当两个质心之间的距离逐渐远离的时候,则导致太阳自转角速度的减慢.这可能是引发太阳活动和太阳磁场变化的原因.这一新认识为太阳活动准22年周期成因机制的解释提供了新的线索和依据.  相似文献   

5.
《Astronomy& Geophysics》2008,49(2):2.05-2.05
Gravitational microlensing has come up trumps again with the discovery of not one but two giant gas planets orbiting another star – and they are very like our own Jupiter and Saturn.  相似文献   

6.
Great things are expected of the GAIA Observatory, currently expected to launch in 2011. Gerry Gilmore explains how it will provide accurate measurements that will help us understand the formation of the Milky Way and the distribution of dark matter.
The GAIA Observatory, ESA's Cornerstone 6 mission, addresses the origin and evolution of our galaxy, and a host of other scientific challenges. GAIA will provide unprecedented positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars in our galaxy and throughout the Local Group, about 1% of the galactic stellar population. Combined with astrophysical information for each star, provided by on-board multicolour photometry, these data will have the precision and depth necessary to address the three key questions which underlie the GAIA science case: l when did the stars in the Milky Way form? l when and how was the Milky Way assembled? l what is the distribution of dark matter in our galaxy? The accurate stellar data acquired for this purpose will also have an enormous impact on all areas of stellar astrophysics, including luminosity calibrations, structural studies, and the cosmic distance scale. Additional scientific products include detection and orbital classification of tens of thousands of extrasolar planetary systems, a comprehensive survey of objects ranging from huge numbers of minor bodies in our solar system, including near-Earth objects, through galaxies in the nearby universe, to some 500 000 distant quasars. GAIA will also provide several stringent new tests of general relativity and cosmology.  相似文献   

7.
Atmospheric electrification is not a purely terrestrial phenomenon: all Solar System planetary atmospheres become slightly electrified by cosmic ray ionisation. There is evidence for lightning on Jupiter, Saturn, Uranus and Neptune, and it is possible on Mars, Venus and Titan. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This paper reviews the theory, and, where available, measurements, of planetary atmospheric electricity which is taken to include ion production and ion–aerosol interactions. The conditions necessary for a planetary atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification could be important throughout the solar system, particularly at the outer planets which receive little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. Atmospheric electrical processes on Titan, before the arrival of the Huygens probe, are summarised. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. However, Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres.  相似文献   

8.
行星会合指数变化与太阳绕太阳系质心运转的周期   总被引:1,自引:1,他引:0       下载免费PDF全文
刘复刚  王建 《地球物理学报》2013,56(5):1457-1466
本文创建了行星会合指数(K)运动学方程,通过定义的行星会合指数可以指代行星会合与相背离的程度,进而发现太阳(S)绕太阳系质心(C)运动的轨迹、形态变化特征.对该运动学方程构建的图像分析发现,太阳绕太阳系质心转动有近半程时间,太阳系质心是处于太阳本体之内.以质量为权重求出了行星系质心运日运动的恒星周期,从而获得了太阳绕太阳系质心运转的真正周期为21.8192年(约22年),并得到了太阳绕太阳系质心运动的轨迹.  相似文献   

9.
Gravitational microlensing data combined with statistical analysis suggests that stars with solar systems like our own make up just 15% of the stars in our galaxy.  相似文献   

10.
本文指出地震学在天文和行星学科里的重要作用.我们主要介绍最近提出的“潮汐—地震波共振”(tidal-seismic resonance)效应,并且讨论它对卫星轨道演化的作用.当在同步轨道以下周期运动的卫星引起的引潮力的频率和行星内部自由震荡频率吻合时,就会发生潮汐—地震波共振.此时,行星内部的地震波将被激发并引起行星表面的显著位移.升高和下降的地面会对卫星产生一个力矩从而使得卫星轨道下降.因为潮汐共振引起的动态地面位移可以比单纯引潮力引起的位移大两个数量级,所以潮汐共振会显著加速卫星下降速率.我们用我们开发的三维地震波场模拟程序AstroSeis数值计算了潮汐—地震波共振对轨道的影响,进而推测这一共振效应可能对行星早期吸积速度有显著影响.另外,因为行星内部的Q值和S波的波速对潮汐共振影响很大,未来研究微重力环境下的小行星或陨石内部地震波的速度和Q值对研究行星演化和太阳系的形成至关重要.  相似文献   

11.
If intelligent life were common in the Universe, should we not be aware of it on Earth through contact with advanced space ships and automatic probes? Would we not at least expect to intercept communication signals between space travellers? That this is not found has led to much speculation in the past. Recent discoveries of planets around other stars (called here exoplanets) and, separately, recent discoveries in the evolution of life on Earth, including Homo sapiens, allow this question to be considered again but now with more information than before. This is the subject of the present paper. The study involves aspects of physics and chemistry in combination with biological studies. It is concluded here that the places where technologically capable intelligent life might be expected to be found in our Galaxy are so few that any such “centres of civilisation” must be separated by large distances, probably in excess of 50 light years. If true, this would make the different centres essentially isolated and would suggest that each manifestation of advanced intelligent life is a purely local development. This would agree with our experience of aloneness. Nevertheless, the number of centres throughout the Universe would still be astronomically large, even if each galaxy had only one centre. An hypothesis is proposed which could account for the existence of such centres in this form.  相似文献   

12.
Solar radiation (both total and in various wavelengths) varies at different time scales—from seconds to decades or centuries—as a consequence of solar activity. The energy received from the Sun is one of the natural driving forces of the Earth's atmosphere and since this energy is not constant, it has been argued that there must be some non-zero climate response to it. This response must be fully specified in order to improve our understanding of the climate system and the impact of anthropogenic activities on it. However, despite all the efforts, if and how subtle variations of solar radiation affect climate and weather still remains an unsolved puzzle. One key element that is very often taken as evidence of a response, is the similarity of periodicities between several solar activity indices and different meteorological parameters. The literature contains a long history of positive or negative correlations between weather and climate parameters like temperature, rainfall, droughts, etc. and solar activity cycles like the 27-day cycle, the prominent 11-year sunspot cycle, the 22-year Hale cycle and the Gleissberg cycle of 80–90 years. A review of these different cycles is provided as well as some of the correlative analyses between them and several stratospheric parameters (like stratospheric geopotential heights, temperature and ozone concentration) and tropospheric parameters (like temperature, rainfall, water level in lakes and river flooding, clouds) that point to a relationship of some kind. However, the suspicion on these relationships will remain as long as an indisputable physical mechanism, which might act to produce these correlations, is not available.  相似文献   

13.
In the solar system, our Sun is Nature’s most efficient particle accelerator. In large solar flares and fast coronal mass ejections (CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks, diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions (CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth, propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.  相似文献   

14.
Since 1969, seismology has been extended beyond the Earth, and seismic sensors have been placed on the surface of other bodies of the solar system. A Lunar seismic network thus operated for the 8 years after 1969, with up to 4 stations, and detected some 1000 Moonquakes per year. A single seismic station was also operated on the Martian surface for 19 months since 1977. Unfortunately, it did not detect any Marsquakes, but produced useful information for future experiments. Remotesensing seismic experiments using Doppler shift observation have also been applied to Jupiter in the last two years and are beginning to return information on the normal modes. Planetary seismology is thus now well developed, and will provide increasing information on the structure and dynamics of the planets and bodies of the solar system. In this paper we review the state of the art in planetary seismology. For the terrestrial planets, we compare the seismic sources, structure and experiments on Earth, Moon and Mars. Such a comparison is useful in evaluating the design of past or future experiments. Results in the seismology of giant planets are also reviewed, stressing the connection between methods and theory.  相似文献   

15.
Acceleration of charged particles in magnetic field-aligned electric potential differences at Earth and at the outer planets in the solar system is summarized and its general importance in the Universe is briefly discussed.The role of field-aligned currents, driven by parallel electric fields, in causing filamentary structure in stellar atmospheres is briefly reviewed.The differences between auroral optical emissions at various planets are summarized.The important role of field-aligned potential differences in the generation of AKR and corresponding emissions from other objects is discussed.Finally, aurora-associated processes for ejection of planetary plasma into space are briefly reviewed.  相似文献   

16.
The levels of chromospheric and coronal activity of the Sun are compared with new vast observations of late-type stars. The solar chromosphere turned to be more powerful than in the main body of stars and the corona is considerably weakened. A wavelet analysis of activity indices and measurement results for the magnetic field of the Sun as a star was performed for several solar cycles. It was obtained that solar activity in the differential rotation differs from phenomena on less massive K stars with cycles and, in contrast to them, the large-scale magnetic field of the Sun is a regulating factor for active processes. These results can be naturally explained with the assumption that the activity of a star with a given mass depends on the depth of the lower base of the convective zone. This seems to require the development of knowledge about the two-level dynamo and a new approach to studying solar-type activity.  相似文献   

17.
The study of the cosmic chemical abundance of the elements suggests that water (which is a combination of the first and second most abundant chemically active elements) is likely to be the most abundant chemical compound in the solar system.It is found that water indeed appears to be a common constituent of planetary bodies even though its presence is not always directly detectable. The amount involved, and the form it takes, varies from one object to another. The Earth has surface liquid water and crustal hydrate materials and only Mars of the terrestrial planets is also likely to have non-atmospheric water and that in frozen form near the surface. The mantles of the icy satellites, and particularly those of Jupiter and Saturn, are the most extended locations of water in the solar system although Uranus and Neptune are likely to have substantial mid-mantle internal water components. Only Mercury and Moon appear to be devoid of water. The smaller bodies such as comets are excluded from the discussion even though they are now known to be composed largely of water-ice.  相似文献   

18.
Peter Schröder, Robert Smith and Kevin Apps take a speculative look at what the future may hold as the Sun becomes a supergiant.
Astronomy textbooks tell us that one day the Sun will expand to become a red supergiant of enormous size, finally swallowing its inner planets, including Earth. However, recent solar evolution models, which account for a realistic amount of mass loss, suggest a (slightly) less catastrophic future for our planet.  相似文献   

19.
The Lagrangian formalism is applied to consider temporal evolution of the ensemble of interacting magnetohydrodynamical cyclones governed by Langevin-type equations in a rotating medium. This problem is relevant for fast-rotating convective objects such as the cores of planets and a number of stars, where the Rossby numbers are far below unity and the geostrophic balance of the forces takes place. The paper presents the results of modeling for both the two-dimensional (2D) case when the cyclones can rotate relative to the rotation axis of the whole system in the vertical plane, and for the case of spatial rotation by two angles. It is shown that variations in the heat flux on the outer boundary of the spherical shell modulate the frequency of the reversals of the mean dipole magnetic field, which agrees with the three-dimensional (3D) modeling of the planetary dynamo. Applications of the model for giant planets are discussed, and an explanation for some episodes in the history of the geomagnetic field in the past is suggested.  相似文献   

20.
Stars with the same temperature, luminosity, chemical composition, and activity as the Sun may be designated “sunlike stars.” The variability of several dozen reasonably sunlike stars has been monitored regularly since 1966 in chromospheric Ca II HK emission, and since 1984 in the visual continuum; larger stellar samples have been observed less comprehensively. Similar solar time series exist. A comparison of solar variability with its stellar analogs indicates that the Sun's current behavior is not unusual among sunlike stars, although the amplitude of the Sun's cyclic variation, measured photometrically, may be smaller than that of its stellar analogs. If the ensemble characteristics of a sample of sunlike stars are representative of the Sun's possible behavior, then such samples may provide insight about states of solar activity, such as Maunder Minima, which have not been observed on the Sun during the contemporary era of space-based measurements. Future progress in solar–stellar research will likely require studies of (1) rigorously selected samples of sunlike field stars, and (2) larger samples from stellar clusters, observed using 4-m class telescopes equipped with multi-object spectrographs and CCD photometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号