首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Fifteen submarine glasses from the East Pacific Rise (CYAMEX), the Kyushu-Palau Ridge (DSDP Leg 59) and the Nauru Basin (DSDP Leg 61) were analysed for noble gas contents and isotopic ratios. Both the East Pacific Rise and Kyushu-Palau Ridge samples showed Ne excess relative to Ar and a monotonic decrease from Xe to Ar when compared with air noble gas abundance. This characteristic noble gas abundance pattern (type 2, classified by Ozima and Alexander) is interpreted to be due to a two-stage degassing from a noble gas reservoir with originally atmospheric abundance. In the Kyushu-Palau Ridge sample, noble gases are nearly ten times more abundant than in the East Pacific Rise samples. This may be attributed to an oceanic crust contamination in the former mantle source.There is no correlation between the He content and that of the other noble gas in the CYAMEX samples. This suggests that He was derived from a larger region, independent from the other noble gases.Except where radiogenic isotopes are involved, all other noble gas isotopic ratios were indistinguishable from air noble gas isotopic ratios. The3He/4He in the East Pacific Rise shows a remarkably uniform ratio of (1.21±0.07)×10?5, while the40Ar/36Ar ranges from 700 to 5600.  相似文献   

2.
The thermal release patterns of He, Ne and Ar from samples of the Carbo iron meteorite show that virtually no fractionation of3He,4He,21Ne and38Ar occurs. Thus, conclusions about iron meteorites based on measured noble gas ratios will be unaffected by gas loss, and measurement of these ratios cannot yield information about possible loss. Further, noble gas loss cannot explain the abnormal elemental and isotopic patterns observed in some iron meteorites, notably hexahedrites.  相似文献   

3.
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nu- clide abundances and isotopic ratios can be classified into two types: low 3He/4He type and high 3He/4He type. The low 3He/4He type is characterized by high 4He abundances of 191×10-9 cm3·STP·g-1 on average, with variable 4He, 20Ne and 40Ar abundances in the range (42.8―421)×10-9 cm3·STP·g-1, (5.40―141)×10-9 cm3·STP·g-1, and (773―10976)×10-9 cm3·STP·g-1, respectively. The high 3He/4He samples are characterized by low 4He abundances of 11.7×10-9 cm3·STP·g-1 on average, with 4He, 20Ne and 40Ar abundances in the range of (7.57―17.4)×10-9 cm3·STP·g-1, (10.4―25.5)×10-9 cm3·STP·g-1 and (5354―9050)×10-9 cm3·STP·g-1, respectively. The low 3He/4He samples have 3He/4He ratios (with R/RA ratios of 2.04―2.92) which are lower than those of MORB (R/RA=8±1) and 40Ar/36Ar ratios (447―543) which are higher than those of air (295.5). The high 3He/4He samples have 3He/4He ratios (with R/RA ratios of 10.4―12.0) slightly higher than those of MORB (R/RA=8±1) and 40Ar/36Ar ratios (293―299) very similar to those of air (295.5). The Ne isotopic ratios (20Ne/22Ne and 21Ne/22Ne ratios of 10.3―10.9 and 0.02774―0.03039, respectively) and the 38Ar/36Ar ratios (0.1886―0.1963) have narrow ranges which are very similar to those of air (the 20Ne/22Ne, 21Ne/22Ne, 38Ar/36Ar ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low 3He/4He type and high 3He/4He type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)- and EM (Enriched Mantle)-type mantle material, respectively. The low 3He/4He type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Sea- mounts whereas the high 3He/4He type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the MagellanSeamounts, Marcus-Wake Seamounts, Marshall Is- land Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with varia- tions in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantlesource may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.  相似文献   

4.
Noble gas isotopes including 3He/4He, 40Ar/36Ar and Xe isotope ratios were determined for coexisting glass and olivine crystals in tholeiitic and alkalic basalts and dunite xenoliths from Loihi Seamount.Glass and coexisting olivine crystals have similar 3He/4He ratios (2.8–3.4) × 10?5, 20 to 24 times the atmospheric ratio (RA), but different 40Ar/36Ar ratios (400–1000). Based on the results of noble gas isotope ratios and microscopic observation, some olivine crystals are xenocrysts. We conclude that He is equilibrated between glass and olivine xenocrysts, but Ar is not.The apparent high 3He/4He ratio (3 × 10?5; = 21 RA) coupled with a relatively high 40Ar/36Ar ratio (4200) for dunite xenoliths (KK 17-5) may be explained by equilibration of He between MORB-type cumulates and the host magma.Except for the dunite xenoliths, noble gas data for these Loihi samples are compatible with a model in which samples from hot spot areas may be explained by mixing between P (plume)-type and M (MORB)-type components with the addition of A (atmosphere)-type component.Excess 129Xe has not been observed due to apparent large mass fractionation among Xe isotopes.  相似文献   

5.
Noble gas concentrations and isotopic compositions have been determined for four submarine volcanic glasses from the Valu Fa Ridge (VFR) in the southern Lau Basin. The samples are the least differentiated ones from this area, and they display enrichments in fluid-mobile elements similar to the nearby island arc. 3He/4He ratios are slightly below average MORB (6.8–7.8 times atmospheric), whereas Ne, Ar, Kr, and Xe have isotopic compositions very similar to air. Together with previously published data from the Valu Fa Ridge and other spreading segments in the Lau Basin, our data show a systematic latitudinal variation of increasing Ne, Ar, Kr, and Xe abundances from north to south as well as Ne and Ar isotopic compositions changing from MORB-like to atmosphere-like in the same direction. Moreover, isotopic compositions and noble gas abundances of the lavas correlate strongly with Ba/Nb ratios and H2O concentrations. Based on these observations and mass balance arguments, we propose that the atmospheric noble gases come from the subducting oceanic crust and are not due to shallow contamination with air dissolved in seawater or assimilation of old crust. Our data suggest that the noble gases released from the subducting slab are atmospheric and thus contain little or no solar He and Ne. In addition to the fact that ratios of He to heavy noble gases are small in aged ocean crust, He has possibly fractionated from the other noble gases due to its higher diffusivity, and thus He transport from the subducting slab into the mantle wedge is probably insignificant. We propose that the 3He/4He ratios lower than MORB observed in the VFR lavas result from radiogenic ingrowth of He in a highly depleted, and hence degassed, mantle wedge after the enrichment of U and Th released from the downgoing slab.  相似文献   

6.
The isotopic composition and abundances of He, Ne and Ar have been measured in a sequence of vertically stacked gas reservoirs at Hajduszoboszlo and Ebes, in the Pannonian Basin of Hungary. The gas reservoirs occur at depths ranging from 727 to 1331 m, are CH4 dominated and occupy a total rock volume of approximately 1.5 km3. There are systematic variations in both major species abundances and rare gas isotopic composition with depth: CO2 and N2 both increase from 0.47 and 1.76% to 14.1 and 30.5%, respectively, and 40Ar/36Ar and 21Ne/22Ne increase systematically from 340 and 0.02990 at 727 m to 1680 and 0.04290 at 1331 m. A mantle-derived He component between 2 and 5% is present in all samples, the remainder is crustal-radiogenic He. The Ar and Ne isotope variations arise from mixing between atmosphere-derived components in groundwater, and crustally produced radiogenic Ar and Ne. The atmosphere-derived 40Ar and 21Ne decreases from 85 and 97% of the total 40Ar and 21Ne at 727 m to 18 and 68% at 1331 m. The deepest samples are shown to have both atmosphere-derived and radiogenic components close to the air-saturated water and radiogenic production ratios. The shallowest samples show significant fractionation of He/Ar and Ne/Ar ratios in atmosphere-derived and radiogenic rare gas components, but little or no fractionation of He/Ne ratios. This suggests that diffusive fractionation of rare gases is relatively unimportant and that rare gas solubility partitioning between CH4 and H2O phases controls the observed rare gas elemental abundances.The total abundance of atmosphere-derived and radiogenic rare gas components in the Hajduszoboszlo gas field place limits on the minimum volume of groundwater that has interacted with the natural gas, and the amount of crust that has degassed and supplied radiogenic rare gases. The radiogenic mass balance cannot be accounted for by steady state production either within the basin sediments or the basement complex since basin formation. The results require that radiogenic rare gases are stored at their production ratios on a regional scale and transported to the near surface with minimal fractionation. The minimum volume of groundwater required to supply the atmosphere-derived rare gases would occupy a rock volume of some 1000 km3 (assuming an average basin porosity of 5%), a factor of 670 greater than the reservoir volume. Interactions between groundwater and the Hajduszoboszlo hydrocarbons has been on a greater scale than often envisaged in models of hydrocarbon formation and migration.  相似文献   

7.
New analyses of He, Ne, Ar and CO2 trapped in basaltic glasses from the Southeast Indian Ridge (Amsterdam-St. Paul (ASP) region) show that ridge magmas degas by a Rayleigh distillation process. As a result, the absolute and relative noble gas abundances are highly fractionated with 4He/40Ar* ratios as high as 620 compared to a production ratio of ∼3 (where 40Ar* is 40Ar corrected for atmospheric contamination). There is a good correlation between 4He/40Ar* and the MgO content of the basalt, suggesting that the amount of gas lost from a particular magma is related to the degree of crystallization. Fractional crystallization forces oversaturation of CO2 because CO2 is an incompatible element. Therefore, crystallization will increase the fraction of gas lost from the magma. The He-Ar-CO2-MgO-TiO2 compositions of the ASP basalts are modeled as a combined fractional crystallization-fractional degassing process using experimentally determined noble gas and CO2 solubilities and partition coefficients at reasonable magmatic pressures (2-4 kbar). The combined fractional crystallization-degassing model reproduces the basalt compositions well, although it is not possible to rule out depth of eruption as a potential additional control on the extent of degassing. The extent of degassing determines the relative noble gas abundances (4He/40Ar*) and the 40Ar*/CO2 ratio but it cannot account for large (>factor 50) variations in He/CO2, due to the similar solubilities of He and CO2 in basaltic magmas. Instead, variations in CO2/3He (≡C/3He) trapped in the vesicles must reflect similar variations in the primary magma. The controls on C/3He in mid-ocean ridge basalts (MORBs) are not known. There are no obvious correlated variations between C/3He and tracers of mantle heterogeneity (3He/4He, K/Ti etc.), implying that the variations in C/3He are not likely to be a feature of the mantle source to these basalts. Mixing between MORB-like sources and more enriched, high 3He/4He sources occurs on and near the ASP plateau, resulting in variable 3He/4He and K/Ti compositions (and many other tracers). Using 4He/40Ar* to track degassing, we demonstrate that mixing systematics involving He isotopes are determined in large part by the extent of degassing. Relatively undegassed lavas (with low 4He/40Ar*) are characterized by steep 3He/4He-K/Ti mixing curves, with high He/Ti ratios in the enriched magma (relative to He/Ti in the MORB magma). Degassed samples (high 4He/40Ar*) on the other hand have roughly equal He/Ti ratios in both end-members, resulting in linear mixing trajectories involving He isotopes. Some degassing of ASP magmas must occur at depth, prior to magma mixing. As a result of degassing prior to mixing, mixing systematics of oceanic basalts that involve noble gas-lithophile pairs (e.g. 3He/4He vs. 87Sr/86Sr or 40Ar/36Ar vs. 206Pb/204Pb) are unlikely to reflect the noble gas composition of the mantle source to the basalts. Instead, the mixing curve will reflect the extent of gas loss from the magmas, which is in turn buffered by the pressure of combined crystallization-degassing and the initial CO2 content.  相似文献   

8.
springerlink.com Studies of mantle fluids are currently one of the hot topics in the earth science, greatly contributing to re-vealing origins and evolutions of fluids. In general, the concept of mantle fluids refers to their active compo-nents, such as CO2, H2O, N2, etc., while the noble gases inert in chemical properties belong to another research system. Due to their marked differences in various fluid sources of the Earth[1], the isotopic sig-natures of He and Ar have been widely used a…  相似文献   

9.
This study presents new major and trace element, mineral, and Sr, Nd, and noble gas isotope geochemical analyses of basalts, gabbro, and clinopyroxenite from the Mariana Arc (Central Islands and Southern Seamount provinces) including the forearc, and the Mariana Trough (Central Graben and Spreading Ridge). Mantle source compositions beneath the Mariana Arc and the Mariana Trough indicate a mantle source that is depleted in high field strength elements relative to MORB (mid‐oceanic ridge basalt). Samples from the Mariana Arc, characterized by high ratios of Ba/Th, U/Th, 84Kr/4He and 132Xe/4He, are explained by addition of fluid from the subducted slab to the mantle wedge. Correlations of noble gas data, as well as large ion lithophile elements, indicate that heavy noble gases (Ar, Kr, and Xe) provide evidence for fluid fluxing into the mantle wedge. On the other hand, major elements and Sr, Nd, He, and Ne isotopic data of basalts from the Mariana Trough are geochemically indistinguishable from MORB. Correlations of 3He/4He and 40Ar/36Ar in the Mariana Trough samples are explained by mixing between MORB and atmosphere. One sample from the Central Graben indicates extreme enrichment in 20Ne/22Ne and 21Ne/22Ne, suggesting incorporation of solar‐type Ne in the magma source. Excess 129Xe is also observed in this sample suggesting primordial noble gases in the mantle source. The Mariana Trough basalts indicate that both fluid and sediment components contributed to the basalts, with slab‐derived fluids dominating beneath the Spreading Ridge, and that sediment melts, characterized by high La/Sm and relatively low U/Th and Zr/Nb, dominate in the source region of basalts from the Central Graben.  相似文献   

10.
To enable a wider use of dissolved noble gas concentrations and isotope ratios in groundwater studies, we have developed an efficient and portable sampling device using a commercially available membrane contactor. The device separates dissolved gases from a stream of water and collects them in a small copper tube (6 mm in diameter and 100 mm in length with two pinch‐off clamps) for noble gas analysis by mass spectrometry. We have examined the performance of the sampler using a tank of homogeneous water prepared in the laboratory and by field testing. We find that our sampling device can extract heavier noble gases (Ar, Kr, and Xe) more efficiently than the lighter ones (He and Ne). An extraction time of about 60 min at a flow rate of 3 L/min is sufficient for all noble gases extracted in the sampler to attain equilibrium with the dissolved phase. The extracted gas sample did not indicate fractionation of helium (3He/4He) isotopes or other noble gas isotopes. Field performance of the sampling device was tested using a groundwater well in Vienna and results were in excellent agreement with those obtained from the conventional copper tube sampling method.  相似文献   

11.
Noble gas elemental and isotopic abundances were measured in seven deep-sea water samples from five different sampling sites in the Nankai Trough, the Japan Trench and the Kuril Trench. The samples were obtained by the manned submersible “Nautile”. Most of the sampling sites are associated with clam colonies and/or fluid venting. Excesses both in3He/4He ratio and He concentration are observed in a seawater sample collected a few kilometers off the clam colonies which were found at a depth of 3830 m at the mouth of the Tenryu Canyon. Concentrations of noble gases (Ne, Ar, Kr and Xe) in this sample show progressive depletion from Ne to Xe relative to those in 1°C air-saturated seawater, which can be attributed to mixing of hot water ( 15°C) with cold ambient water ( 1°C). Isotopic compositions of Ne, Ar, Kr and Xe in this sample are atmospheric. These observations may reflect venting of hot pore water around the Tenryu Canyon. All the other samples show a significant excess in concentration of all noble gases relative to 1°C air-saturated seawater and the isotopic compositions are atmospheric. This excess of noble gas concentrations may appear to be air contamination in the samples. However, results of hydrocarbon analyses of the Kaiko samples imply that such large amount of air contamination is improbable. Decomposition of gas hydrate in deep-sea sediments is a more likely explanation for the observed excess of noble gas concentration.  相似文献   

12.
Helium, neon and argon isotope compositions of fluid inclusions have been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion3He/4He ratios are 2.2—13.3 times the air value (Ra), and with a mean of 7.2 Ra. Comparison with the local vent fluids (3He/4He=7.5—8.2 Ra) and mid-ocean ridge basalt values (3He/4He=6—11 Ra) shows that the variation range of3He/4He ratios from sulfide-hosted fluid inclusions is significantly large. Values for20Ne/22Ne are from 10.2 to 11.4, which are significantly higher than the atmospheric ratio (9.8). And fluid-inclusion40Ar/36Ar ratios range from 287 to 359, which are close to the atmospheric values (295.5). These results indicate that the noble gases of fluid inclusions in hydrothermal sulfides are a mixture of mantle- and seawater-derived noble gases; the partial mantle-derived components of trapped hydrothermal fluids may be from the lower mantle; the helium of fluid inclusions is mainly from upper mantle; and the Ne and Ar components are mainly from seawater.  相似文献   

13.
The abundances and isotopic compositions of noble gases in two samples from ultramafic xenoliths in alkali basalt, a young kaersutitic amphibole separated from a peridotite xenolith from Dish Hill, California and an ancient whole-rock lherzolite xenolith from Baja California, are reported and compared with the results of analyses on other mantle samples. In addition to previously recognized excesses of 3He and 129Xe, our results indicate that ambient gases in the mantle show a general enrichment of the lighter-mass nonradiogenic isotopes of Ar, Kr and Xe, and Ar with 40Ar/36Ar = 3 · 102.  相似文献   

14.
The large differences in He and Ar diffusivities in silicate minerals could result in fractionation of the He/Ar ratio during melting of the mantle, producing He/Ar ratios in the primary mantle melts that are higher than those of the bulk mantle. Modeling noble gas diffusion out of the bulk mantle into fast diffusion pathways (such as fractures or melt channels) suggests that significant (order of magnitude) He/Ar fractionation will occur if the fast diffusion channels are spaced several meters apart and the noble gas residence in these diffusion channels is of the order days to weeks. In addition, the 15% difference in 3He and 4He diffusivities could also produce isotopic fractionation between the melt and its solid source. Modeling the behavior of He and Ar during melting shows that small increases (few %) in 3He/4He should be correlated with larger variations (factor of 5) in 4He/40Ar. However, in order to test this hypothesis the effects of subsequent He–Ar fractionation that occur during degassing have to be corrected. I describe a scheme that can separate He/Ar variations in the primary melt from overprinted fractionation during magmatic degassing. Using the degassing-corrected data, there is a correlation between the primary melt’s 4He/40Ar and 3He/4He in mid-ocean ridge basalts (MORBs). The slope of the correlation is consistent with the models of preferential diffusion of 3He relative to 4He and of 4He relative to 40Ar from the solid mantle into the melt. Diffusive fractionation of noble gases during melting of the mantle can also account for low 4He/40Ar ratios commonly found in residual mantle xenoliths: preferential diffusion of He relative to Ar will produce some regions of the mantle with low 4He/40Ar, the complement of the high 4He/40Ar ratios in basalts. Diffusive fractionation cannot, however, account for differences between the He and Ne isotopic compositions of MORBs compared with ocean island basalts (OIBs); not only are the extremely high 3He/4He ratios of OIBs (up to 50 Ra) difficult to produce at reasonable mantle time and lengthscales, but also the Ne isotopic compositions of MORBs and OIBs do not lie on a single mass fractionation line, therefore cannot result from diffusive fractionation of a single mantle Ne source. If preferential diffusion of He from the solid mantle into primary melts is a significant process during generation of MORBs, then it is difficult to constrain the He concentration of the mantle: He concentrations in basalts and the He flux to the ocean essentially result from extraction of He from a larger (and unknown) volume of mantle than that that produced the basalts themselves. The He concentration of the mantle cannot be constrained until more accurate estimates of the diffusion contribution are available.  相似文献   

15.
A number of processes may modify the noble gas composition of silicate liquids so that the composition of noble gases observed in glassy margins of deep-sea basalts is not that of the upper mantle. Differential solubility enhances the light noble gases relative to the heavier gases; however, we demonstrate that the observed abundance pattern cannot be attributed to solubility of noble gases with atmospheric proportions. Partial melting and fractional crystallization increase the noble gas content of all species relative to mantle concentrations, but do not fractionate their relative abundances. Noble gases may be lost from an ascending magma in various ways, the most important, however, may be exclusion of gas from crystals forming at the time of solidification, which is shown to result in marked loss of gas from the basalt. Small amounts of low-temperature alteration of solidified basalt can produce dramatic changes in the noble gas abundance pattern, since the adsorption coefficients for the different noble gas favor uptake of heavy species relative to the light species. Atmospheric contamination can account for observed variations in the 40Ar/36Ar ratio of oceanic basalts. The degree of crystallinity of glassy margins of deep-sea basalts may control the helium abundance of these samples; however, the uniform 3He/4He values reported apparently reflect a relatively constant proportion of radiogenic and primordial helium in the mantle.  相似文献   

16.
Atmospheric noble gases (e.g., 22Ne, 36Ar, 84Kr, 130Xe) in crustal fluids are only sensitive to subsurface physical processes. In particular, depletion of atmospheric noble gases in groundwater due to boiling and steam separation is indicative of the occurrence of a thermal event and can thus be used to trace the thermal history of stable tectonic regions. We present noble gas concentrations of 38 deep brines (~ 0.5–3.6 km) from the Michigan Basin. The atmospheric noble gas component shows a strong depletion pattern with respect to air saturated water. Depletion of lighter gases (22Ne and 36Ar) is stronger compared to the heavier ones (84Kr and 130Xe). To understand the mechanisms responsible for this overall atmospheric noble gas depletion, phase interaction models were tested. We show that this atmospheric noble gas depletion pattern is best explained by a model involving subsurface boiling and steam separation, and thus, consistent with the occurrence of a past thermal event of mantle origin as previously indicated by both high 4He/heat flux ratios and the presence of primordial mantle He and Ne signatures in the basin. Such a conceptual model is also consistent with the presence of past elevated temperatures in the Michigan Basin (e.g., ~ 80–260 °C) at shallow depths as suggested by previous thermal studies in the basin. We suggest that recent reactivation of the ancient mid-continent rift system underneath the Michigan Basin is likely responsible for the release of both heat and mantle noble gases into the basin via deep-seated faults and fracture zones. Relative enrichment of atmospheric Kr and Xe with respect to Ar is also observed, and is interpreted as reflecting the addition of sedimentary Kr and Xe from associated hydrocarbons, following the hydrothermal event. This study pioneers the use of atmospheric noble gases in subsurface fluids to trace the thermal history of stable tectonic regions.  相似文献   

17.
A detailed analysis of published data on the N2, Ar, and He content and Ar and He isotopic composition of fumarolic fluids from Vulcano crater (south Italy) supports a model with two endmembers comprising magmatic and hydrothermal fluids with correspondingly low and high H2O content. The magmatic component with the highest 3He/4He and highest absolute concentrations of N2, Ar, and He also has the lowest N2/Ar and N2/He ratios (∼300 and ∼500, respectively). In contrast, the hydrothermal endmember, with the lower 3He/4He and lower absolute N2, Ar, and He abundances, has high N2/Ar (∼1,000) and high N2/He (>3,000) ratios. The hydrothermal component is also characterized by the highest 40Ar/36Ar ratios (>1,000) and is proposed to be the main carrier of metamorphic gases from the arc crust.  相似文献   

18.
Stepwise heating experiments on separated graphite-diamond-kamacite aggregates have revealed a pronounced difference in the release patterns of spallogenic3He and trapped gases. About half the3He is released at T ? 920°C, without being accompanied by significant amounts of primordial gases; the latter, together with the remaining3He, is given off only at T ? 1200°C. Acid treatment of an aliquant dissolved about 2/3 of the total Fe in the sample but did not cause a significant change in the gas concentrations. It is concluded that (a) there is no evidence for a loss of spallogenic3He from the graphite-diamond-kamacite aggregates, (b) one major constituent of the aggregates - graphite - is almost void of trapped gases, (c) kamacite is not a main carrier of the gases. This leaves diamond as the most probable site of the primordial gases.The elemental abundance pattern in the noble gases is essentially as reported previously. In particular, the excellent correlation between relative depletion factors, normalized to the cosmic abundance ratios, and the respective ionisation energies is confirmed. Other important features of the trapped gases are a20Ne/22Ne ratio of 12.3 ± 0.6, intermediate between solar wind and solar flare implanted Ne,36Ar/38Ar = 5.20 ± 0.06 and a measured40Ar/36Ar ratio (before blank correction) of 0.0076.Possible modes of trapping of the noble gases are discussed.  相似文献   

19.
The noble gas components and their distributions were studied in a variety of clasts and in separated phases of clast 2,2 using a detailed stepwise release program. The results show the presence of two distinct trapped components: one appears to be similar to Kenna-type gas [28], the other is characterized by element ratios36Ar/84Kr < 370 and36Ar/132Xe ≥ 900 and is termed Ar-rich component. Silicate phases are identified as carriers of both components; but since they are differentially released, the results imply that multiple carrier phases are required. Unlike results from other meteorites, HF attack removes all but 15% of the xenon. Substantial amounts of trapped and, in many cases, unfractionated air were observed, apparently in reaction products of reduced and easily oxidized minerals. The129Xer release systematics imply the presence of two distinct carriers of extinct129I and suggest lithophilic behavior of I in Abee. The U/Th-4He and K-40Ar data are consistent with a 4.5 Gy age. Amounts of spallogenic He, Ne and Ar yield a cosmic ray exposure age of 8 My. We compare the Ar-rich component to noble gas abundances in planetary atmospheres and we discuss a suggested model of origin.  相似文献   

20.
Cores and coats of five coated diamonds, one from Botswana and four from Zaire, were separately analyzed for their noble gases. Noble gases in the diamonds are essentially of a trapped origin, including radio- and nucleogenic components such as4He, 40Ar, 21Neexcess and excesses in Xe isotopes (129, 131–136). The fairly precise elemental and isotopic abundances allow us to infer the noble gas state in the ancient mantle. 20Ne/22Ne ratios are fairly constant (11.8 ± 0.4), and very close to that of SEP (solar energetic particle)-Ne, but distinctly different from the atmospheric ratio. 21Ne/22Ne ratios range from 0.028 to 0.06, which is attributed to nucleogenic 21Ne from 18O(α, n)21Ne and 24Mg(n, α)21Ne reactions. The difference in 20Ne/22Ne between atmosphere and mantle can be attributed to the hydrodynamic escape of hydrogen from the primitive atmosphere during the very early stage in the Earth's history. 38Ar/36Ar and Kr isotopic ratios are identical to the atmospheric values within 1%. After correction for 238U- or 244Pu-fission Xe, the 131–136Xe abundance ratios are indistinguishable from atmospheric ratios. Lighter Xe isotopes (124–128Xe) are also likely to be atmospheric, but a final conclusion must wait until better data are obtained.In a 136Xe/130Xe−129Xe/130Xe diagram, diamond data lie on the same line as defined for MORB. The observed identical correlation for both diamonds and MORB's appears to suggest that the progenitor of the excess131–136Xe is 244Pu, but not238U, though the direct Xe isotopic measurements was not precies enough to decide unanimously the progenitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号