首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate chemical evolution models for 4 dwarf spheroidal satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii for the gas heated by supernovae to be retained until the observed stellar population has formed. Systems showing extended star formation histories however (Carina and Leo I), are consistent with the idea that their tidally limited dark haloes provide the necessary gravitational potential wells to retain their gas. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
We use recent Hubble Space Telescope colour–magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, Leo I, Leo II and Ursa Minor) to infer the star formation histories of these systems, SFR ( t ). Applying a new variational calculus maximum likelihood method, which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume a priori the form of the function one is trying to recover. The results are checked independently using Saha's W statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity-weighted mean star formation history of this sample of galaxies.  相似文献   

3.
A comprehensive study of the measurement of star formation histories from colour–magnitude diagrams (CMDs) is presented, with an emphasis on a variety of subtle issues involved in the generation of model CMDs and maximum likelihood solution. Among these are the need for a complete sampling of the synthetic CMD, the use of proper statistics for dealing with Poisson-distributed data (and a demonstration of why χ 2 must not be used), measuring full uncertainties in all reported parameters, quantifying the goodness-of-fit, and questions of binning the CMD and incorporating outside information. Several example star formation history measurements are given. Two examples involve synthetic data, in which the input and recovered parameters can be compared to locate possible flaws in the methodology (none were apparent) and measure the accuracy with which ages, metallicities and star formation rates can be recovered. Solutions of the histories of seven Galactic dwarf spheroidal companions (Carina, Draco, Leo I, Leo II, Sagittarius, Sculptor and Ursa Minor) illustrate the ability to measure star formation histories given a variety of conditions – numbers of stars, complexity of star formation history and amount of foreground contamination. Significant measurements of ancient >8 Gyr star formation are made in all seven galaxies. Sculptor, Draco and Ursa Minor appear entirely ancient, while the other systems show varying amounts of younger stars.  相似文献   

4.
Stellar abundance pattern of n-capture elements such as barium is used as a powerful tool to infer how the star formation proceeded in dwarf spheroidal (dSph) galaxies. It is found that the abundance correlation of barium with iron in stars belonging to dSph galaxies orbiting the Milky Way, i.e., Draco, Sextans, and Ursa Minor have a feature similar to that in Galactic metal-poor stars. The common feature of these two correlations can be realized by our in homogeneous chemical evolution model based on the supernova-driven star formation scenario if dSph stars formed from gas with a velocity dispersion of ∼ 26 km s-1. This velocity dispersion together with the stellar luminosities strongly suggest that dark matter dominated dSph galaxies. The tidal force of the Milky Way links this velocity dispersion with the currently observed value ≲ 10 km s-1 by stripping the dark matter in dSph galaxies. As a result, the total mass of each dSph galaxy is found to have been originally ∼ 25 times larger than at present. In this model, supernovae immediately after the end of the star formation can expel the remaining gas over the gravitational potential of the dSph galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We present the results of a set of three-dimensional SPH-Treecode simulations which model the formation and early evolution of disc galaxies, including the generation and return of heavy elements to the interstellar medium by star formation. Starting from simple initial conditions which are given by a uniform density sphere of gas which is embedded in a dark matter halo and in solid-body rotation, we are able to form realistic disc galaxies, and find that an exponential gas disc is quickly formed. Star formation within this exponential disc naturally leads to the formation of abundance gradients which are in broad agreement with those observed, although they are slightly shallower than some observations.
We investigate the systematic effects of variation of mass, rotation and star formation parameters on the abundance gradients. We find that the abundance gradients are most sensitive to changes in the star formation parameters or rotation. Including a critical-density cut-off in the star formation law causes abundance gradients to be steepened.
Analysis of gas flows within the models shows radial flows which are a function of angle of azimuth around the galaxies, with alternating inward and outward flows. This motion is linked to the presence of a bar, whose strength is related to the amount of star formation in the models, and there is a gentle drift of mass inwards. The shallow abundance gradients may be linked to these radial flows.  相似文献   

6.
Dwarf galaxies, as the most numerous type of galaxy, offer the potential to study galaxy formation and evolution in detail in the nearby universe. Although they seem to be simple systems at first view, they remain poorly understood. In an attempt to alleviate this situation, the MAGPOP EU Research and Training Network embarked on a study of dwarf galaxies named MAGPOP-ITP. In this paper, we present the analysis of a sample of 24 dwarf elliptical galaxies (dEs) in the Virgo cluster and in the field, using optical long-slit spectroscopy. We examine their stellar populations in combination with their light distribution and environment. We confirm and strengthen previous results that dEs are, on average, younger and more metal-poor than normal elliptical galaxies, and that their [α/Fe] abundance ratios scatter around solar. This is in accordance with the downsizing picture of galaxy formation where mass is the main driver for the star formation history. We also find new correlations between the luminosity-weighted mean age, the large-scale asymmetry, and the projected Virgocentric distance. We find that environment plays an important role in the termination of the star formation activity by ram-pressure stripping of the gas in short time-scales, and in the transformation of discy dwarfs to more spheroidal objects by harassment over longer time-scales. This points towards a continuing infalling scenario for the evolution of dEs.  相似文献   

7.
Our knowledge about the dynamics, the chemical abundances and the evolutionary histories of the more luminous dwarf spheroidal (dSph) galaxies is constantly growing. However, very little is known about the enrichment of the ultra‐faint systems recently discovered in large numbers in large sky surveys. Current low‐resolution spectroscopy and photometric data indicate that these galaxies are highly dark matter dominated and predominantly metal poor. On the other hand, recent high‐resolution abundance analyses indicate that some dwarf galaxies experienced highly inhomogeneous chemical enrichment, where star formation proceeds locally on small scales. In this article, I will review the kinematic and chemical abundance information of the Milky Way satellite dSphs that is presently available from low‐ and high resolution spectroscopy. Moreover, some of the most peculiar element and inhomogeneous enrichment patterns will be discussed and related to the question of to what extent the faintest dSph candidates could have contributed to the Galactic halo, compared to more luminous systems (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

9.
We analyse a sample of 52 000 Milky Way (MW) type galaxies drawn from the publicly available galaxy catalogue of the Millennium Simulation with the aim of studying statistically the differences and similarities of their properties in comparison to our Galaxy. Model galaxies are chosen to lie in haloes with maximum circular velocities in the range 200–250 km s−1 and to have bulge-to-disc ratios similar to that of the MW. We find that model MW galaxies formed 'quietly' through the accretion of cold gas and small satellite systems. Only ≈12 per cent of our model galaxies experienced a major merger during their lifetime. Most of the stars formed ' in situ ', with only about 15 per cent of the final mass gathered through accretion. Supernovae (SNe) and active galactic nuclei (AGN) feedback play an important role in the evolution of these systems. At high redshifts, when the potential wells of the MW progenitors are shallower, winds driven by SNe explosions blow out a large fraction of the gas and metals. As the systems grow in mass, SNe feedback effects decrease and AGN feedback takes over, playing a more important role in the regulation of the star formation activity at lower redshifts. Although model MW galaxies have been selected to lie in a narrow range of maximum circular velocities, they nevertheless exhibit a significant dispersion in the final stellar masses and metallicities. Our analysis suggests that this dispersion results from the different accretion histories of the parent dark matter haloes. Statistically, we also find evidences to support the MW as a typical Sb/Sc galaxy in the same mass range, providing a suitable benchmark to constrain numerical models of galaxy formation.  相似文献   

10.
We construct a simple, robust model of the chemical evolution of galaxies from high to low redshift, and apply it to published observations of damped Lyman α quasar absorption line systems (DLAs). The elementary model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). We consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict some observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays.
Despite its simplicity, our 'monolithic collapse' model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z ∼3. However, from the comparison of DLA observations with our model, it is clear that star formation rates at higher redshifts ( z >3) are enhanced. Galaxy interactions and mergers, and gas flows very probably play a major role.  相似文献   

11.
We present predictions for the abundance and nature of extremely red objects (EROs) in the Λ cold dark matter model. EROs are red, massive galaxies observed at   z ≥ 1  and their numbers and properties pose a challenge to hierarchical galaxy formation models. We compare the predictions from two published models, one of which invokes a 'superwind' to regulate star formation in massive haloes and the other which suppresses gas cooling in haloes through 'radio-mode' active galactic nucleus (AGN) feedback. The superwind model underestimates the number counts of EROs by an order of magnitude, whereas the radio-mode AGN feedback model gives excellent agreement with the number counts and redshift distribution of EROs. In the AGN feedback model the ERO population is dominated by old, passively evolving galaxies, whereas observations favour an equal split between old galaxies and dusty starbursts. Also, the model predicts a more extended redshift distribution of passive galaxies than is observed. These comparisons suggest that star formation may be quenched too efficiently in this model.  相似文献   

12.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

14.
In this paper, we investigate the star formation and chemical evolution of damped Lyman α systems (DLAs) based on the disc galaxy formation model developed by Mo, Mao & White. We propose that the DLAs are the central galaxies of less-massive dark haloes present at redshifts z ∼3, and they should inhabit haloes of moderately low circular velocity. The empirical Schmidt law of star formation rates, and closed box model of chemical evolution that an approximation known as instantaneous recycling is assumed, are adopted. In our models, when the predicted distribution of metallicity for DLAs is calculated, two cases are considered. One is that, using the closed-box model, empirical Schmidt law and star formation time, the distribution of metallicity can be directly calculated. The other is that, when the simple gravitational instability of a thin isothermal gas disc as first discussed by Toomre is considered, the star formation occurs only in the region where the surface density of gas satisfies the critical value, not everywhere of a gas disc. In this case, we first obtain the region where the star formation can occur by assuming that the disc has a flat rotation curve and rotational velocity is equal to the circular velocity of the surrounding dark matter halo, and then calculate the metallicity distribution as in case one. We assume that star formation in each DLA lasts for a period of 1 Gyr from redshifts z =3. There is only one output parameter in our models, i.e. the stellar yield, which relates to the time of star formation history and is obtained by normalizing the predicted distribution of metallicity to the mean value of 1/13 Z as presented by Pettini et al.. The predicted metallicity distribution is consistent with the current (rather limited) observational data. A random distribution of galactic discs is taken into account.  相似文献   

15.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

16.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

17.
It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I &; Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for the Sculptor and Fornax dwarf spheroidal galaxies which have been previously had single element (low resolution) calcium abundance studies (Tolstoy et al., 2001). See Figures 1 and 2.  相似文献   

18.
19.
We present a statistical study of a very large sample of H  ii galaxies taken from the literature. We focus on the differences in several properties between galaxies that show the auroral line [O  iii ]λ4363 and those that do not present this feature in their spectra. It turns out that objects without this auroral line are more luminous, are more metal-rich and present a lower ionization degree. The underlying population is found to be much more important for objects without the [O  iii ]λ4363 line, and the effective temperature of the ionizing star clusters of galaxies not showing the auroral line is probably lower. We also study the subsample of H  ii galaxies whose properties most closely resemble the properties of the intermediate-redshift population of luminous compact blue galaxies (LCBGs). The objects from this subsample are more similar to the objects not showing the [O  iii ]λ4363 line. It might therefore be expected that the intermediate- redshift population of LCBGs is powered by very massive, yet somewhat aged, star clusters. The oxygen abundance of LCBGs would be greater than the average oxygen abundance of local H  ii galaxies.  相似文献   

20.
We review the methodology adopted in computing chemical evolution models of galaxies of different morphological type (ellipticals, spirals and irregulars). We discuss the importance of the history of star formation in different galaxies in order to interpret the observed abundances. In particular, we discuss the time-delay model which allows us to interpret the observed abundance patterns in galaxies as due to the different contributions of supernovae II and Ia. We show that the time-delay model applied to galaxies of different morphological type predicts different [X/Fe] versus [Fe/H] relations in different galaxies. As a consequence of this, these relations can be used to infer the nature and to date high redshift objects. Finally, we show our predictions for the cosmic star formation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号