首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a time-transformed leapfrog scheme combined with the extrapolation method to construct an integrator for orbits in N-body systems with large mass ratios. The basic idea can be used to transform any second-order differential equation into a form which may allow more efficient numerical integration. When applied to gravitating few-body systems this formulation permits extremely close two-body encounters to be considered without significant loss of accuracy. The new scheme has been implemented in a direct N-body code for simulations of super-massive binaries in galactic nuclei. In this context relativistic effects may also be included.  相似文献   

2.
A multigroup, diffusion scheme is derived from the Boltzmann equation for efficient numerical computation of neutrino transport in a collapsing stellar core. This scheme treats all neutrino scattering processes correctly with a Legendre expansion of the scattering rates. Modifications of the diffusion coefficient and the addition of a flux limiter extend the applicability of the scheme to neutrino transparent regimes and improve the agreement of the solution in both opaque and transparent regimes with those obtained analytically for some test problems. In addition, a more accurate treatment of the neutrino flowAcross shock discontinuities is developed through a shock matching condition. The solutions given by this multigroup, flux-limited diffusion scheme are compared with those of a modifiedS N code.Supported in part by the National Science Foundation (Grant AST75-05012 and AST 77-17572).  相似文献   

3.
The physico-chemical origin of the hydrogenated carbon clusters (cumulenes, PAHs, graphite or amorphous carbon) in space is still an open question. We have worked out a numerical simulation code in order to build up planar (graphite-like) carbon clusters. We assume that hydrogen atoms can fix on the carbon skeleton following a random process allowing forH 2 formation. The structures we have found are very complex. In a given cluster, several molecular entities can simultaneously be present: (sp 2) carbon chains, rings or compact formations (aromatic structures or small PAHs). We argue that these very contorted hydrogenated structures could be ubiquitous in the interstellar medium, in carbon-rich circumstellar regions and PNe.  相似文献   

4.
We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH) simulation code gadget . It is based on a fast, robust and photon-conserving integration scheme where the radiation transport problem is approximated in terms of moments of the transfer equation and by using a variable Eddington tensor as a closure relation, following the Optically Thin Variable Eddington Tensor suggestion of Gnedin & Abel. We derive a suitable anisotropic diffusion operator for use in the SPH discretization of the local photon transport, and we combine this with an implicit solver that guarantees robustness and photon conservation. This entails a matrix inversion problem of a huge, sparsely populated matrix that is distributed in memory in our parallel code. We solve this task iteratively with a conjugate gradient scheme. Finally, to model photon sink processes we consider ionization and recombination processes of hydrogen, which is represented with a chemical network that is evolved with an implicit time integration scheme. We present several tests of our implementation, including single and multiple sources in static uniform density fields with and without temperature evolution, shadowing by a dense clump and multiple sources in a static cosmological density field. All tests agree quite well with analytical computations or with predictions from other radiative transfer codes, except for shadowing. However, unlike most other radiative transfer codes presently in use for studying re-ionization, our new method can be used on-the-fly during dynamical cosmological simulation, allowing simultaneous treatments of galaxy formation and the re-ionization process of the Universe.  相似文献   

5.
We have developed a massively parallel, simple and fast hydrodynamics code for multidimensional, self-gravitating and adiabatic flows. Our primary motivation is the study of the non-linear development of white dwarf oscillations excited via tidal resonances, typically over hundreds of stellar dynamical times. Consequently, we require long-term stability, low diffusivity and high-numerical efficiency. This is accomplished by an Eulerian finite-difference scheme on a regular Cartesian grid. This choice of coordinates provides uniform resolution throughout the flow as well as simplifying the computation of the self-gravitational potential, which is done via spectral methods. In this paper, we describe the numerical scheme and present the results of some common diagnostic problems. We also demonstrate the stability of a cold white dwarf in three dimensions over hundreds of dynamical times. Finally, we compare the results of the numerical scheme to the linear theory of adiabatic oscillations, finding numerical quality factors on the order of 6000 and excellent agreement with the oscillation frequency obtained by the linear analysis.  相似文献   

6.
We present an N-body code called Taichi for galactic dynamics and controlled numerical experiments. The code includes two high-order hierarchical multipole expansion methods: the Barnes-Hut (BH) tree and the fast multipole method (FMM). For the time integration, the code can use either a conventional adaptive KDK or a Hamiltonian splitting integrator. The combination of FMM and the Hamiltonian splitting integrator leads to a momentum-conserving N-body scheme with individual time steps. We find Taichi performs well in the typical applications in galactic dynamics. In the isolated and interacting galaxies tests, the momentum conserving scheme produces the same result as a conventional BH tree code. But for similar force accuracies, FMM significantly speeds up the simulations compared to the monopole BH tree. In the cold collapse test, we find the inner structure after relaxation can be sensitive to the force accuracies. Taichi is ready to incorporate special treatment of close encounters thanks to the Hamiltonian splitting integrator, suitable for studying dynamics around central massive bodies.  相似文献   

7.
We investigate the role of nonlinear Alfvén-wave interaction in the diffusive shock acceleration of solar-wind ions at the Earth’s bow shock. Allowance for the nonlinear wave interaction through induced scattering and two-quanta absorption at plasma parameters β≲0.1 is shown to limit the Alfvén-wave amplitude δB to δBB, whereas the quasi-linear approach predicts the generation of waves with amplitudes much larger than the diffusive shock magnetic field strength B. The nonlinear interaction results in spectral wave energy transfer to lower frequencies, which yields a significant increase in the particle acceleration rate.  相似文献   

8.
Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin (Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.  相似文献   

9.
Drifts are one of the major cosmic ray modulation mechanisms in the heliosphere. Three types of drifts occur in the background heliospheric magnetic field, namely curvature, gradient and current sheet drifts. The last component occurs because of the switch in magnetic field polarity across the heliospheric current sheet and is the main topic of study. We discuss and implement a new approach to model drifts in a numerical modulation model. The model employs stochastic differential equations to solve the relevant transport equation in five (three spatial, energy and time) dimensions. What is of interest is the fact that the model can handle current sheet tilt angles up to the theoretical maximum of α=90° and still remain numerically stable. We use the additional insights gained from the numerical model to investigate the effectiveness of drifts along the current sheet by examining the relationship between the current sheet path length and the cosmic ray propagation time. It is found that diffusion can disrupt the drift process very effectively, leading to diffusive short circuiting of the current sheet by the cosmic rays.  相似文献   

10.
New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson‐Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A‐type contact binary. The period of the system is still increasing, which can be attributed to light‐time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682×10−7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The objective of this paper is to present new extensions of the space – time conservation element and solution element (CESE) method for simulations of magnetohydrodynamic (MHD) problems in general curvilinear coordinates by using an adaptive mesh refinement (AMR) grid system. By transforming the governing MHD equations from the physical space (x,y,z) to the computational space (ξ,η,ζ) while retaining the form of conservation, the CESE method is established for MHD in the curvilinear coordinates. Utilizing the parallel AMR package PARAMESH, we present the first implementation of applying the AMR CESE method for MHD (AMR-CESE-MHD) in both Cartesian and curvilinear coordinates. To show the validity and capabilities of the AMR-CESE-MHD code, a suite of numerical tests in two and three dimensions including ideal MHD and resistive MHD are carried out, with two of them in both Cartesian and curvilinear coordinates. Numerical tests show that our results are highly consistent with those obtained previously by other authors, and the results under both coordinate systems confirm each other very well.  相似文献   

12.
The COMBO-17 survey cite(Wolf et al., 2002) contains ≈ 40000 galaxies down to R=24 mag on an area of one square degree, obtained with the wide field imager at the 2.2 m telescope at La Silla. A multi-colour classification on the basis of 5 broadband and 12 medium band filters (=17 bands) yields accurate redshifts (σ z ≤ 0.01 at the bright end up to σ z ≈ 0.1 at the faint end) and spectral energy distribution types (SEDs) when using observed galaxy templates from (Kinney et al.,1996). However, there is an obvious weakness in this classification scheme: The relation between star formation history and SED remains unclear. It is therefore impossible to draw firm conclusions about the age of the underlying stellar population and the expected aging between z ≈ 1 and z ≈ 0 can not be quantified. We will present first results of our attempt to replace the observed templates with model spectra from the PEGASE code (Fioc and Rocca-Volmerange, 1997), in order to get a better handle on the star formation history. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The purpose of this paper is to present a numerical technique to directly compute the Chandrasekhar'sH ()-function for anisotropic scattering in terms of the roots of the characteristic equations as well as the quadrature points of a certain degreen employed to approximate the definite integral involved in the basic equation. The principal feature of the algorithm proposed here is a compact computer code to enumerate n C m combinations ofn distinct integers {1,...,n} takenm at a time. With these quantities available, the coefficients of the polynomial equation of the characteristics equation can be readily computed for any given characteristic function, so that a standard technique such as the Laguerre method can be applied to find all the roots.It is shown that the results obtained for some representativeH()-functions using the present technique with relatively low-order formula (e.g.,n=7) are sufficiently accurate for all practical purposes.  相似文献   

14.
We present observations and light curve analysis of the eclipsing binary R CMa in the narrow band filters v and b. Observations were made during 1993 at Biruni Observatory and the light curves have been analyzed using the Wilson-Devinney light curve interpretation program. Assuming a semi-detached configuration for R CMa, the parameters i, Ω1, L 1, T 2 and A 2 were adjusted for the best fit between the synthesized light curves and observations. Both light curves were fitted well with a lower value of bolometric albedo than what would be expected for a normal cool star with a convective envelope. The masses of the primary and secondary components and the absolute dimensions of the stars have been calculated using the derived relative dimensions from Wilson-Devinney codes and the spectroscopic observations.  相似文献   

15.
For infinitesimal, homologous perturbations, stability analysis has found the solar radiative interior thermally stable. It is considered for the first time here whether stability is preserved when finite amplitude nonhomologous perturbations are present. We argue that local heated regions may develop in the solar core due to magnetic instabilities. Simple numerical estimations are derived for the timescales of the decay of these events and, when heated bubbles are generated that rise towards the surface, of their rising motion. These estimations suggest that the solar core is in a metastable state. For more detailed analysis, we developed a numerical code to solve the differential equation system. Our calculations determined the conditions of metastability and the evolution of timescales. We obtained two principal results. One of them shows that small amplitude heating events (with energy surplus Qo < 1026 ergs) contribute to subtle but long-lifetime heat waves and give the solar interior a persistently oscillating character. Interestingly, the slow decay of heat waves may make their accumulation possible and so their overlapping may contribute to the development of an intermittent, individual, local process of bubble generation, which may also be generated directly by stronger (Qo > 1026 ergs) heating events. Our second principal result is that for heated regions with ΔT/T ≥ 10−4 and radius 105–106cm, the generated bubbles may travel distances larger than their linear size. We point out to some possible observable consequences of the obtained results.  相似文献   

16.
Due to the instability of the radiation line force, the winds of hot, luminous stars should show a pronounced time-dependence resulting from the nonlinear growth of initially small perturbations. Following the method of Owocki, Castor & Rybicki (1988), we describe the time-dependent wind structure obtained with an independently developed code. Under the central assumption ofisothermality, our results are in very good agreement with the ones by Owocki et al. We find that the response of the wind to periodic base perturbations remains largely periodic, at least up tor 2...3R * , with no clear evidence of stochastic behaviour.In order to test the foregoing assumption of isothermality and to compute the X-ray emission from models of structured winds, we have also incorporated theenergy equation into our simulations. We encountered the numerical problem that all radiative cooling zones collapse because of the oscillatory thermal instability (cf. Langer et al. 1981). We present a method to hinder this collapse by changing the cooling function at low temperatures. The resulting wind showsresolved cooling zones; but, for a supergiant wind relatively close to the star (r 10R * ), the macroscopic wind structure is very similar to isothermal calculations. Most of the hot material is caused by shell-shell collisions.  相似文献   

17.
UBV light-curves of the eclipsing binary HS Herculis, obtained in 2002–2003 observational seasons, were analysed with Wilson-Devinney computer code. New absolute dimensions of the system were calculated using the results of the light-curve analysis. Period variation of the system was also investigated. Several new times of minima have been secured for this problematic system. An apsidal motion with a period of 80.7 years was confirmed and a third body in a pretty eccentric orbit (e 3 = 0.90 ± 0.08) with a period of 85.4 years was found. The corresponding internal structure constants of the binary system, log k 2, and the mass of the third body were derived.  相似文献   

18.
This paper describes how a new photometric V light curve solution of Algol type binary U Sge was obtained using Wilson–Devinney code. I also discuss how the physical and orbital parameters, along with absolute dimensions of the system, were determined. The Roche lobe configurations of the system indicate that the secondary component has filled its Roche lobe and therefore is losing mass at the rate of 6.15×10−7 M sun yr−1. The conservative mass flow is the most likely process in this system.  相似文献   

19.
In this paper we prove the existence of bounded motions for an isolated system consisting of a solid bodyB 1 and a material pointB 2 moving under their mutual gravitational attraction. We also consider the special case where the mass ofB 1 is symmetrically distributed with respect to three mutually perpendicular planes passing through its mass center andB 2 moves on one of these planes. We study the types of the regions of possible motion and the ways of their evolution as the energy or the angular momentum of the system changes. As an example we present some results from a numerical study of the case whereB 1 is a homogeneous prolate spheroid.  相似文献   

20.
Radiation-driven winds of hot, massive stars showvariability in UV and optical line profiles on time scales of hours to days.Shock heating of wind material is indicated by the observed X-ray emission. We present time-dependent hydrodynamical models of these winds, where flowstructures originate from a strong instability of the radiative driving. Recent calculations (Owocki 1992) of the unstable growth of perturbations were restricted by the assumptions of 1-D spherical symmetry and isothermality of the wind. We drop the latter assumption and include the energy transfer in the wind. This leads to a severe numerical shortcoming, whereby all radiative cooling zones collapse and the shocks become isothermal again. We propose a method to hinder this collapse. Calculations for dense supergiant winds then show: (1) The wind consists of a sequence of narrow and dense shells, which are enclosed by strong reverse shocks (with temperatures of 106 to 107 K) on their starward facing side. (2) Collisions of shells are frequent up to 6 to 7 stellar radii. (3) Radiative cooling is efficient only up to 4 to 6R *. Beyond these radii, cooling zones behind shocks become broad and alter the wind structure drastically: all reverse shocks disappear, leaving regions ofpreviously heated gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号