首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study addresses disaster risks in Delhi through a resilience approach. It utilizes the Climate Disaster Resilience Index (CDRI) tool, which assesses disaster resilience from five dimensions: physical, social, economic, institutional, and natural. Each dimension comprises 5 parameters, and each parameter consists of 5 variables. The study is carried out in the nine revenue districts of Delhi and reveals that East Delhi is least resilient and New Delhi is most resilient. The CDRI analysis in East Delhi points out the urgent need to focus on key parameters such as housing and land use, population, intensity and frequency of natural hazards, ecosystem services, and land use in natural terms. On the other hand, New Delhi is the most resilient due to all five dimensions, where most significant parameters responsible for its high resilience are housing and land use, population, income, employment, intensity and frequency of natural hazards, ecosystem services, and land use in natural terms. In addition, the overall results of all nine districts show an inverse relationship between resilience score and population density. For example, districts with higher population density show low resilience and vice versa. Moreover, districts located on hazard-prone areas show low resilience. For example, East Delhi and North East Delhi scored low resilience because they both are situated on the Yamuna flood catchment areas. The study further develops key suggestions that are required to address disaster risk in all nine districts of Delhi and discusses future implications of CDRI to address city??s vulnerability. The approach??s distinctness is reflected through its consideration of micro-level diversities and presents some implications to resilience.  相似文献   

2.
环境和灾害是威胁人类生存的两大挑战性问题。由人类活动导致的自然环境破坏和恶化是一个长期累积的过程,类似于人体所患的慢性疾病,对其认识和解决不仅依靠多种条件,也需要很长时间的持久努力。自然灾害的发生一般是短时间内的突然事件,类似人体的急性疾病。为最大限度地减轻自然灾害给人类社会造成的损失,需要实施事先预防、灾前预警、灾时应急和灾后重建的系统工程,其中地球科学家的责任之一是找出有效的宣传演练,使社会各界充分认识灾害的危险性,做好必要的防灾准备。最近20 a来中国的减灾实践经验还说明,为进一步提高减灾的效益,要用科学观念指导各领域的减灾工作,在国家一级层次上要实行多部门协调、多学科合作的综合管理,并注重对灾害发生的规律性研究。例如对群发性灾害链过程及其潜在影响的估计,这对制定区域性可持续发展规划具有重要意义。  相似文献   

3.
千年生态系统评估(MA)是由联合国秘书长安南于2001年6月宣布启动的一项为期4年(2001—2005年)的国际合作项目,这是在全球范围内第一个针对生态系统及其服务与人类福祉之间的联系,通过整合各种资源,对各类生态系统进行全面、综合评估的重大项目。依据MA发布的最新成果,主要从3个方面介绍了它的重要成就与贡献:①首次在全球尺度上系统、全面、多尺度地揭示了各类生态系统的现状和变化趋势、未来变化的情景和应采取的对策,其评估结果为改善与生态系统有关的决策制定过程提供了充分的科学依据;②丰富了生态学的内涵,明确提出了生态系统的状况和变化与人类福祉之间的密切联系,将研究“生态系统与人类福祉”作为现阶段生态学研究的核心内容和引领21世纪生态学发展的新方向,从而将生态学的发展推进到了一个新的阶段;③ 阐述了评估生态系统与人类福祉之间相互关系的框架,并建立了多尺度、综合评估它们各个组分之间相互关系的方法。MA的实施虽然取得了巨大成就,但是它所提出的一系列理念、方法和数据仍需不断完善。这些问题的解决,尚需有关学者今后进行长期不懈的努力。  相似文献   

4.
Catastrophic natural hazards,such as earthquake,pose serious threats to properties and human lives in urban areas.Therefore,earthquake risk assessment(ERA)is indispensable in disaster management.ERA is an integration of the extent of probability and vulnerability of assets.This study develops an integrated model by using the artificial neural network–analytic hierarchy process(ANN–AHP)model for constructing the ERA map.The aim of the study is to quantify urban population risk that may be caused by impending earthquakes.The model is applied to the city of Banda Aceh in Indonesia,a seismically active zone of Aceh province frequently affected by devastating earthquakes.ANN is used for probability mapping,whereas AHP is used to assess urban vulnerability after the hazard map is created with the aid of earthquake intensity variation thematic layering.The risk map is subsequently created by combining the probability,hazard,and vulnerability maps.Then,the risk levels of various zones are obtained.The validation process reveals that the proposed model can map the earthquake probability based on historical events with an accuracy of 84%.Furthermore,results show that the central and southeastern regions of the city have moderate to very high risk classifications,whereas the other parts of the city fall under low to very low earthquake risk classifications.The findings of this research are useful for government agencies and decision makers,particularly in estimating risk dimensions in urban areas and for the future studies to project the preparedness strategies for Banda Aceh.  相似文献   

5.
In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site—specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site—specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate—scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard. and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type.

The usefulness of this approach is demonstrated through an integrated assessment of earthquake—induced lateral—spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral—spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (CIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does; however, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses and increase overall expected community wealth compared to the status quo policy.  相似文献   

6.
Shabana Khan 《Natural Hazards》2012,64(2):1587-1607
An understanding of vulnerability is not only crucial for the survival of the exposed communities to extreme events, but also for their adaptation to climate change. Vulnerability affects community participation in hazard mitigation, influences emergency response and governs adaptive capacity for the changing environmental and hazards characteristics. However, despite increased awareness, assessments and understanding of the processes that produce vulnerability, disaster risks prevail. This raises questions on the effectiveness of vulnerability assessments and their applications for hazard mitigation and adaptation. The literature includes a range of vulnerability assessment methods, wherein frequently the selection of any particular method is governed by the research objectives. On the other hand, hazard mitigation plans and policies even though mention vulnerability, their implementation pays less attention to the variations in its nature and underlying causes. This paper explores possible reasons for such gaps by exploring a case study of the Hutt Valley, New Zealand. It brings out the limitations of different vulnerability assessment methods in representing the local vulnerability and challenges they bring in planning for the vulnerability reduction. It argues that vulnerability assessment based on any particular method, such as deprivation index, principle component analysis, composite vulnerability index with or without weight, may not reveal the actual vulnerability of a place, and therefore, a comprehensive vulnerability assessment is needed.  相似文献   

7.
Jin  Ju-Liang  Fu  Juan  Wei  Yi-Ming  Jiang  Shang-Ming  Zhou  Yu-Liang  Liu  Li  Wang  You-Zhen  Wu  Cheng-Guo 《Natural Hazards》2014,75(2):155-178

Regional waterlog disaster integrated risk system, affected by natural, social, and economic systems and its combination relationship, is a complex system with certain structure and function. Waterlog disaster integrated risk results from the combined effects of regional environment, impact factors, vulnerability, and disaster-reducing capability of flood hazards in the drainage area. Waterlog disaster integrated risk system can be divided into four subsystems of hazard, vulnerability, disaster-reducing capability, and disaster conditions. Evaluation indexes are selected using fuzzy analytic hierarchy process method, and the evaluation index system is established. Then, the waterlog disaster integrated risk evaluation model is proposed based on set pair analysis method. Taking Huaihe river in Anhui Province of China as the typical area in this study, the results show that the proposed approach is able to obtain the spatial distribution characteristics of waterlog hazard, vulnerability, mitigation capabilities, and integrated disaster risk within the study area. From the quantitative point of view, identification of the areas with high flood risk can provide a scientific basis for the flood management and technical support.

  相似文献   

8.
Policy makers and scientists consider that land use strategies are designed to provide direct benefits to people by protecting vital ecosystem services. However, due to lack of information and evaluation methods, there is no effective and systematic tool for assessing tradeoffs between direct human benefits and ecosystem services. Land use changes influence ecosystem properties, processes and components, which are the basis for providing services. Five alternative land use scenarios (no conversion of agricultural lands, no urban expansion, agricultural expansion, forestry expansion, and riparian reforestation) were modeled for the Baiyangdian watershed, China, a densely populated, highly modified watershed with serious water shortage and pollution problems. The model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) is designed to inform decisions about natural resource management, with an aim to align economic forces with conservation. Three ecosystem services (agricultural production, hydropower production, and water quality) were modeled to balance direct benefits and hydrological ecosystem services using InVEST. The results showed that: hydropower production was the greatest in the forestry expansion, but the lowest in agricultural expansion; agricultural production was reduced the most in forestry expansion, while retained the most in riparian reforestation. Riparian reforestation also provided the highest N and P retention and lowest N and P exportation. Riparian reforestation was the optimal land use strategy, since it protected and enhanced the vital ecosystem services without undermining direct human benefits. This research presents an initial analytical framework for integrating direct human benefits and ecosystem services in policy planning and illustrates its application. Although there are important potential tradeoffs between ecosystem services, this systematic planning framework offers a means for identifying valuable synergies between conservation and development.  相似文献   

9.
煤层底板突水是华北型煤田煤矿生产过程中一种常见的水害类型,为解决水害防治工程的科学决策问题,进一步提高防治水工程的可靠性,提出构建智能决策支持系统的技术思路。智能决策支持系统是传统决策支持系统与人工智能技术相互融合的产物,在分析底板水害防治决策支持功能需求的基础上,提出“数据-模型-方案”一体化设计流程,从数据导入、模型驱动、智能决策等3个层次构建底板水害防治智能决策支持系统的基本框架。将模型驱动层进一步细分为方法库、模型库、知识图谱构建3项专业化服务,模型库包括底板突水空间点预测模型、疏水降压数值模拟模型、注浆改造工程可靠性分析模型、隔离工程设计模型及底板水害监测预警模型。系统最终输出的决策方案包括底板突水危险性分区、疏水降压Q-t-s方案、区域注浆改造设计及工程可靠性评价、隔离工程设计、底板突水监测预警警情发布。系统通过注浆过程的反馈-控制、突水监测预警的深度学习、疏水降压方案的动态优化等实现其智能决策。智能决策支持系统将会在煤层底板水害防治可靠性保障方面提供新的技术支撑。   相似文献   

10.
Promper  C.  Glade  T. 《Natural Hazards》2016,82(1):111-127
Assessments of natural hazards and risks are beneficial for sustainable planning and natural hazard risk management. On a regional scale, quantitative hazard and risk assessments are data intensive and methods developed are difficult to transfer to other regions and to analyse different periods in a given region. Such transfers could be beneficial regarding factors of global change influencing the patterns of natural hazard and risk. The aim of this study was to show the landslide exposure of different elements at risk in one map, e.g. residential buildings and critical infrastructure, as a solid basis for an in-depth analysis of vulnerability and consequent risk. This enables to overcome the data intensive assessments on a regional scale and highlights the potential hotspots for risk analysis. The study area is located in the alpine foreland in Lower Austria and comprises around 112 km2. The results show the different levels of exposure, as well as how many layers of elements at risk are affected. Several exposure hotspots can be delineated throughout the study area. This allows a decision on in-depth analysis of hotspots not only by indicated locations but also by a rank resulting from the different layers of incorporated elements at risk.  相似文献   

11.
An integrated vulnerability and risk assessment model (IVR) is proposed. The proposed model is a composite index that assesses the relationships among four critical components, namely exposure, hazard, vulnerability and capacities and measures, and how these can be used to illustrate the integrated risk and vulnerability situation of an area. These factors are assessed using individual variables. Fifty-four variables, objectively decided upon, were used to measure the contribution of each component factor. The general characteristics of vulnerability, risk, exposure and capacities and measures are well known; however, the relative importance of each variable and their inter-relatedness, in measuring risk and vulnerabilities, as demonstrated by the IVR; and how these in turn affect the impacts of natural hazards, are still debatable. The IVR though provides a valid, reliable and sensitive tool, which can be used to further explore these relationships. Through robust testing and application, subjectivity in the selection of variables can be reduced. Moreover, through the establishment of a database for data collection and storage, objectivity (reliability) can be achieved as well as, availability of the requisite data inputs. The sensitivity of the model allows for the quick identification of strategic action, which will ultimately lead to hazard loss reduction. The values yielded for each component factor can help decision-makers in the allocation of scarce developmental funds as well as identify trends in levels of risk, vulnerability, exposures and capacities and measures as well as determine areas where mitigation strategies are needed most.  相似文献   

12.
国内外多功能景观研究进展与展望   总被引:12,自引:0,他引:12  
作为沟通自然景观与人类社会的重要桥梁,景观功能一直以来都是景观生态学的重要研究内容;多功能景观通过对自然景观功能赋予人类价值评判,与土地利用决策紧密相关,已成为当前景观功能研究的重要发展方向、多学科景观综合研究的重点领域和景观生态学新的学科生长点。在系统梳理多功能景观概念内涵的基础上,对比分析了其与景观多功能性、生态系统服务及多功能农业的概念异同;并从景观多功能性评价、多功能景观空间识别、多功能景观规划与管理等3个方面,重点探讨了近年来国内外多功能景观研究的进展及其主要不足;最后,展望了当前国内外多功能景观研究的重点发展方向,即多功能景观权衡机理解析、多功能景观区域类型识别、多功能景观尺度与划区效应评估、多功能景观动态预测及情景模拟。  相似文献   

13.
In the context of natural hazard-related risk analyses, different concepts and comprehensions of the term risk exist. These differences are mostly subjected to the perceptions and historical backgrounds of the different scientific disciplines and results in a multitude of methodological concepts to analyse risk. The target-oriented selection and application of these concepts depend on the specific research object which is generally closely connected to the stakeholders’ interests. An obvious characteristic of the different conceptualizations is the immanent various comprehensions of vulnerability. As risk analyses from a natural scientific-technical background aim at estimating potential expositions and consequences of natural hazard events, the results can provide an appropriate decision basis for risk management strategies. Thereby, beside the preferably addressed gravitative and hydrological hazards, seismo-tectonical and especially meteorological hazard processes have been rarely considered within multi-risk analyses in an Alpine context. Hence, their comparative grading in an overall context of natural hazard risks is not quantitatively possible. The present paper focuses on both (1) the different concepts of the natural hazard risk and especially their specific expressions in the context of vulnerability and (2) the exemplary application of the natural scientific-technical risk concepts to analyse potential extreme storm losses in the Austrian Province of Tyrol. Following the corresponding general risk concept, the case study first defines the hazard potential, second estimates the exposures and damage potentials on the basis of an existing database of the stock of elements and values, and third analyses the so-called Extreme Scenario Losses (ESL) considering the structural vulnerability of the potentially affected elements at risk. Thereby, it can be shown that extreme storm events can induce losses solely to buildings and inventory in the range of EUR 100–150 million in Tyrol. However, in an overall context of potential extreme natural hazard events, the storm risk can be classified with a moderate risk potential in this province.  相似文献   

14.

In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub-Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional, attitudinal and asset factors influencing urban vulnerability. Multiple methods were applied to cover the full range of vulnerabilities and to identify potential response strategies, including: model-based forecasts, spatial analyses, document studies, interviews and stakeholder workshops. We demonstrate the potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential for strategic coordination and action. To better adapt to urban flooding and thereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning-by-doing’ process of adaptation.

  相似文献   

15.
喀斯特生态系统服务研究进展与展望   总被引:1,自引:1,他引:0  
韩会庆  苏志华 《中国岩溶》2017,36(3):352-358
喀斯特生态系统是全球典型的脆弱生态系统之一,它为人类提供了重要的服务功能和价值。回顾国内外喀斯特生态系统服务研究的文献可发现,当前研究多遵循“土地利用变化—生态系统服务价值响应”的研究范式,仅重视中小尺度喀斯特生态系统服务价值的空间异质性,强调土地利用变化和生态工程对生态系统服务价值的影响。而今后应加强基于“生态系统结构、过程—功能—服务”级联框架的喀斯特生态系统服务研究,构建喀斯特生态系统服务分类体系,突出大尺度喀斯特生态系统服务评估,拓展喀斯特生态系统服务之间权衡与协同及喀斯特生态系统服务对人类福祉的影响,定量分析自然和人为因素对喀斯特生态系统服务的影响。   相似文献   

16.
Frolova  N. L.  Kireeva  M. B.  Magrickiy  D. V.  Bologov  M. B.  Kopylov  V. N.  Hall  J.  Semenov  V. A.  Kosolapov  A. E.  Dorozhkin  E. V.  Korobkina  E. A.  Rets  E. P.  Akutina  Y.  Djamalov  R. G.  Efremova  N. A.  Sazonov  A. A.  Agafonova  S. A.  Belyakova  P. A. 《Natural Hazards》2016,80(1):103-125

Hydrological extreme events pose an imminent risk to society and economics. In this paper, various aspects of hydrological hazards in Russia are analysed at different scales of risk assessment. It is shown that the number of hydrological and meteorological hazards in Russia has been growing every year. The frequency of economic losses associated with extreme low flow in this century has increased by factor five compared to the last decade of the previous century. With regard to floods, an interesting spatial patter can be observed. On the one hand, the number of floods in the Asian part of the country has increased, whereas on the other hand, the number and intensity of floods in estuarine areas in the European part of Russia have significantly reduced since the middle of the twentieth century, especially in the 2000s. This decrease can be attributed to runoff flooding in the mouths of regulated rivers, with an effective system of flood and ice jam protection. The analysis shows that there is an 8–12-year periodicity in the number of flood occurrences and that flood surges have intensified over the last 110 years, especially on the European territory of Russia. An integrated index that accounts for flood hazards and socio-economic vulnerability was calculated for each region of Russia. A classification of flood risk was also developed, taking into account more than 20 hydrological and social–economic characteristics. Based on these characteristics, hazard and vulnerability maps for entire Russia were generated which can be used for water management and the development of future water resources plans.

  相似文献   

17.
In the European Alps, the concept of risk has increasingly been applied in order to reduce the susceptibility of society to mountain hazards. Risk is defined as a function of the magnitude and frequency of a hazard process times consequences; the latter being quantified by the value of elements at risk exposed and their vulnerability. Vulnerability is defined by the degree of loss to a given element at risk resulting from the impact of a natural hazard. Recent empirical studies suggested a dependency of the degree of loss on the hazard impact, and respective vulnerability (or damage-loss) functions were developed. However, until now, only little information is available on the spatial characteristics of vulnerability on a local scale; considerable ranges in the loss ratio for medium process intensities only provide a hint that there might be mutual reasons for lower or higher loss rates. In this paper, we therefore focus on the spatial dimension of vulnerability by searching for spatial clusters in the damage ratio of elements at risk exposed. By using the software SaTScan, we applied an ordinal data model and a normal data model in order to detect spatial distribution patterns of five individual torrent events in Austria. For both models, we detected some significant clusters of high damage ratios, and consequently high vulnerability. Moreover, secondary clusters of high and low values were found. Based on our results, the assumption that lower process intensities result in lower damage ratios, and therefore in lower vulnerability, and vice versa, has to be partly rejected. The spatial distribution of vulnerability is not only dependent on the process intensities but also on the overall land use pattern and the individual constructive characteristics of the buildings exposed. Generally, we suggest the use of a normal data model for test sites exceeding a minimum of 30 elements at risk exposed. As such, the study enhanced our understanding of spatial vulnerability patterns on a local scale.  相似文献   

18.
Barrantes  Gustavo 《Natural Hazards》2018,92(2):1081-1095

Disaster risk assessment related to natural events has generally been carried out separately by specialists in each area of earth sciences, which has two negative consequences: Firstly, results of investigations are presented in different formats, mainly maps, which differ significantly from each other in aspects such as scale, symbols and units; secondly, it is common for an area or territory to contain several hazards that can potentially interact with each other, generating cascade effects or synergies. While some authors have proposed a multi-hazard analysis framework based on the use of probabilities, the quality and quantity of data required for this approach are rarely available in developing countries. Qualitative methods, on the other hand, have traditionally been limited to overlapping maps, without considering possible spatial interactions. Given the importance of integrated assessment of natural hazards for land use planning and risk management, this article proposes a heuristic multi-hazard model appropriate for developing countries, based on a standardization of classifications and a spatial interaction matrix between hazards. The model can be adjusted to be applied at different scales and in different territories; to demonstrate its versatility, it is applied to the municipality of Poás, Costa Rica, a territory with multiple natural hazards.

  相似文献   

19.
生态模型在河口管理中的应用研究综述   总被引:1,自引:0,他引:1  
河口作为河流和海洋的交汇地,具有生态交错带特性,其在自然和人类活动双重压力下发生着演变.生态模型是研究生态系统结构、功能及其时空演变规律以及生物过程对于生态系统的影响及其反馈机制的重要手段.采用不同方法对生态模型进行分类,综述各类生态模型的特性、优缺点及应用领域.讨论建模过程中模型变量与函数、模型整合及时空尺度、模型参数取值及不确定等关键技术问题.分析各类生态模型在河口生态工程设计、生态系统修复、生态系统评价、系统决策支持等管理领域的应用.尽管中国河口生态模型构建及应用已有一些成果,但与国外相比,在理论生态学及数据积累方面仍有一定差距.  相似文献   

20.
The discussion on the social-ecological dimensions of hazards is constantly evolving. This paper explores the trajectory of research relating to hazards and their impact on vulnerable human populations. Interpretations of disaster risk have included estimating losses in terms of human life and property, and analyzing the social mechanisms in place that exacerbate or mitigate a population’s sensitivity to hazard events. In keeping with recent trends in research relating to disaster risk, the paper focuses on the social dimension of vulnerability and the contribution of social structures and relationships in building community resilience. Institutional frameworks and policies in particular determine the quantity and quality of resources and services available to people that contribute to resilience over time. The hazard-risk-location-model (HRLM) is proposed that is based on re-specifying disaster risk in terms of exposure and coping ability to capture the focus on social vulnerability and resilience. The framework of the HRLM incorporates the following components: (1) linkages within existing social capital; (2) spatial variation in social and institutional frameworks; (3) positive and negative feedbacks; and (4) characteristics of the hazard event. The model contributes to the range of place-based assessments designed to address the human-environmental impacts of hazards and disasters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号