首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.  相似文献   

2.
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε_(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate.  相似文献   

3.
The paper reports the results of integrated geological, petrological, geochemical, and geochronological studies of the Tastau igneous ring complex in the Zaisan orogen of eastern Kazakhstan. Interaction between felsic and mafic magmas has been studied. Hybrid rocks are represented by gabbros and diorites injected into a granitic magma chamber. They occur as dikes and pillow-like and globular mafic bodies variously disintegrated and mixed with host granitoids. The age of synplutonic rocks is 242 ± 20 Ma (U/Pb zircon dating), which is, with regard to analytical error, substantially younger than it was presumed.Mechanisms of interaction between felsic and mafic magmas have been studied. They include mechanical (mingling) and chemical (mixing) interaction, which produce composite mixtures and hybrid rocks. The ratios of mafic to felsic components involved in the formation of intermediate rocks were calculated from major elements by regression analysis and tested with regard to rare and trace elements. The model for mingling includes rapid quenching of the mafic melt when it is injected into the granitic magma chamber, decomposition of crystalline fragments, dispersion of fragments and crystals in the magma chamber under conditions of rapid turbulent flow, and enrichment of felsic magma with femic components to produce monzonitic magmas.  相似文献   

4.
Miocene aged calc-alkaline mafic host stocks (monzogabbro) and felsic microgranular enclaves (monzosyenite) around the Bafra (Samsun) area within Tertiary volcanic and sedimentary units of the Eastern Pontides, Northeast Turkey are described for the first time in this paper. The felsic enclaves are medium to fine grained, and occur in various shapes such as, elongated, spherical to ellipsoidal, flame and/or rounded. Most enclaves show sharp and gradational contacts with the host monzogabbro, and also show distinct chilled margins in the small enclaves, indicating rapid cooling. In the host rocks, disequilibrium textures indicating mingling or mixing of coeval mafic and felsic magmas are common, such as, poikilitic and antirapakivi textures in feldspar phenocrysts, sieve textured-patchy-rounded and corroded plagioclases, clinopyroxene megacrysts mantled by bladed biotites, clinopyroxene rimmed by green hornblendes, dissolution in clinopyroxene, bladed biotite, and acicular apatite. The petrographical and geochemical contrasts between the felsic enclaves and host monzogabbros may partly be due to a consequence of extended interaction between coeval felsic and mafic magmas by mixing/mingling and diffusion. Whole-rock and Sr-Nd isotopic data suggests that the mafic host rocks and felsic enclaves are products of modified mantle-derived magmas. Moreover, the felsic magma was at near liquidus conditions when injected into the mafic host magma, and that the mafic intrusion reflects a hybrid product formed due to the mingling and partial (incomplete) mixing of these two magmas.  相似文献   

5.
In Bundelkhand Craton of central India, mafic dykes intruded when granitoids was partly crystallized. Cuspate–lobate boundary along the contact of granitoids and mafic magma indicates magma mingling in outcrop scale while textural evidence of mingling is represented by acicular apatite morphologies, titanite–plagioclase ocelli and ophitic–subophitic texture, mafic clots, resorbed plagioclase, and hornblende–zircon associations. Mingling also caused thermal exchange and fluid activity along the boundary between two coeval magmas. Crystal size distribution analyses for hornblende in the mafic rocks yield concave up curves which is also consistent with interaction of felsic and mafic magmas.  相似文献   

6.
陈兵  熊富浩  马昌前  陈越  黄虎 《地球科学》2021,46(6):2057-2072
壳-幔岩浆相互作用如何影响长英质火成岩的岩石学多样性是当前岩石学研究的焦点问题之一.以岩石类型丰富的东昆仑白日其利长英质岩体和暗色微粒包体为研究对象,开展系统的锆石U-Pb年代学、矿物学、全岩元素地球化学和Sr-Nd-Hf同位素研究,探讨和解析这一重要科学问题.LA-ICPMS锆石U-Pb年代学研究表明,暗色微粒包体(247.8±2.0 Ma)与二长花岗岩(247.5±1.4 Ma)、花岗闪长岩(248.8±2.1 Ma)和石英闪长岩(248.8±1.5 Ma)均侵位结晶于早三叠世.岩相学和矿物学研究表明,白日其利长英质岩石与包体的成因机制与壳-幔岩浆的机械或化学混合作用密切相关.元素地球化学和Sr-Nd-Hf同位素组成研究揭示,幔源镁铁质岩浆端元起源于受俯冲板片流体交代的富集地幔熔融,而壳源长英质岩浆端元则起源于东昆仑古老的变质杂砂岩基底.岩石成因分析揭示,幔源镁铁质岩浆侵入长英质晶粥岩浆房,促使长英质晶粥发生活化,随后壳-幔岩浆端元以不同比例和不同方式发生机械和化学混合等相互作用,从而形成镁铁质岩墙、包体、石英闪长岩和花岗闪长岩等多种岩石类型.晶粥状态下壳-幔岩浆相互作用是控制东昆仑长英质火成岩多样性和大陆地壳生长演化的重要方式.   相似文献   

7.
太行山北段出露大规模中生代岩浆岩带,以中酸性岩为主,普遍含有基性微粒包体。锆石的SHRIMP U-Pb年代学研究表明,包体形成于126Ma左右,与寄主岩石大致同时形成。锆石的LA-MC-ICPMS Lu-Hf同位素原位测量研究表明,基性岩来自富集地幔的部分熔融,并遭受了一定程度的地壳混染;主要的中酸性岩基形成于壳幔岩浆混和过程,而岩基中微粒基性包体是经历分离结晶的基性岩浆注入酸性岩浆房中形成。  相似文献   

8.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

9.
Calc-alkaline, metaluminous granitoids in the north of Jonnagiri schist belt (JSB) are associated with abundant mafic rocks as enclave. The enclaves represent xenoliths of the basement, mafic magmatic enclaves (MME) and synplutonic mafic dykes. The MME are mostly ellipsoidal and cuspate shape having lobate margin and diffuse contact with the host granitoids. Sharp and crenulated contacts between isolated MME and host granitoids are infrequent. The MME are fine-grained, slightly dark and enriched in mafic minerals compare to the host granitoids. MME exhibits evidences of physical interaction (mingling) at outcrop scale and restricted hybridization at crystal scale of mafic and felsic magmas. The textures like quartz ocelli, sphene (titanite) ocelli, acicular apatite inclusion zone in feldspars and K-feldspar megacrysts in MME, megacrysts across the contact of MME and host and mafic clots constitute textural assemblages suggestive of magma mingling and mixing recorded in the granitoids of the study area. The quartz ocelli are most likely xenocrysts introduced from the felsic magma. Fast cooling of mafic magma resulted in the growth of prismatic apatite and heterogeneous nucleation of titanite over hornblende in MME. Chemical transfer from felsic magma to MME forming magma envisage enrichment of silica, alkalis and P in MME. The MME show low positive Eu anomalies whereas hybrid and host granitoids display moderate negative Eu-anomalies. Synplutonic mafic dyke injected at late stage of crystallising host felsic magma, display back veining and necking along its length. The variable shape, dimensions, texture and composition of MME, probably are controlled by the evolving nature and kinematics of interacting magmas.  相似文献   

10.
顾枫华  章永梅  刘瑞萍  郑硌  孙玄 《岩石学报》2015,31(5):1374-1390
华北地台北缘乌拉山地区的沙德盖钾长花岗岩体中普遍发育以二长岩为主的暗色微粒包体,包体具塑性流变特征,与寄主岩的接触界线或为截然或为渐变过渡。岩相学观察表明,包体中发育多种反映岩浆混合作用的典型组构,如石英眼斑、环斑长石、镁铁质团块、钾长石巨晶的溶蚀、磷灰石的针柱状形貌、长石中的包体带以及钙长石的"针尖"结构等。造岩矿物的电子探针分析表明,岩浆混合在沙德盖岩体的形成中起了重要作用,寄主花岗岩浆主要来自下地壳,而暗色包体岩浆则主要为地幔来源。锆石LA-ICP-MS U-Pb同位素定年结果显示,沙德盖花岗岩及其暗色微粒包体的形成时代基本一致,分别为233.4±2.3Ma和229.7±1.5Ma(中三叠世),进一步佐证了该岩体是岩浆混合作用的产物。研究认为,当铁镁质岩浆与长英质岩浆混合时,早期基性岩浆的快速淬冷形成了边界清楚、具明显冷凝边且暗色矿物含量较高的包体;随着两种不同成分岩浆之间温差的减小以及组分的交换,进一步形成了颜色较浅、边界渐变过渡和无明显冷凝边的包体。  相似文献   

11.
In this paper we document widespread coeval felsic-mafic magma interaction and progressive hybridization near Gurgunta in the northern part of Eastern Dharwar Craton (EDC) where mafic magma pulses have injected into a 2.5 Ga granite pluton. The pluton contains voluminous pink porphyritic facies with minor equigranular grey facies. The mafic body shows compositional variation from diorite to meladiorite with hornblende as the chief mafic mineral with lesser clinopyroxene and biotite. The observed variation on binary diagrams suggests that granite was evolved by fractional crystallization. Chemical characteristics such as higher Al2O3 and moderate to high CaO, Mg#, Ni, Cr, Co and V are interpreted by slab-melting. Mafic bodies show lower SiO2, Na2O and K2O; but higher CaO, Mg#, FeO, Cr, Ni and V; higher LREE with moderate to higher HREE which suggest their derivation from mantle. A major active shear zone has played an important role at the time of synplutonic mafic injection and hybridization process. Field evidences suggest that the synplutonic mafic body has injected into the crystallizing felsic magma chamber in successive stages. The first stage injection has resulted in extensive mixing and hybridization due to the liquidus state of resident felsic magma to which hot mafic magma was injected. However, progressive mixing produced heterogeneity as the xenocrysts started mechanically dispersed into hybrid magma. The second stage injection, after a time gap, encountered colder and viscous hybrid magma in the magma chamber, which inhibited free injection. As a consequence, the mafic magma spread into magma chamber as flows, producing massive mafic bodies. However, with the continued mafic pulses and the heat gradient, the viscosity contrasts of mafic magma and felsic magma were again lowered resulting in second stage mixing. This episode was followed by mingling when the granite was almost crystallized, but still viscous enough to accommodate lamellar and ribbon like mafic penetrations to produce mingling. The successive mixing and mingling processes account for the observed heterogeneity in the granite pluton.  相似文献   

12.
A. Pesquera 《地学学报》1994,6(6):575-581
The significance of mafic enclaves as indicators of magma mixing processes between juxtaposed felsic and mafic magmas is evaluated from a rheological point of view. A qualitative model for explaining strain and morphological changes in the enclaves has been developed on the basis of the catastrophe theory.
Mafic enclaves in intrusive granitoids commonly behave as physical systems that can be described using a cusp catastrophe model. Their behaviour is characterized by bimodality, divergence and sudden changes, which are properties typical of this model. Accordingly, the presence of mafic enclaves showing variable strain and morphology within the same granitoid intrusion would be indicarive of mutual interaction and mingling between mafic and felsic magmas. Due to the characteristics of these processes, it is not possible to establish unambiguous age relationships between the two magmatic components.  相似文献   

13.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

14.
Felsic magmatisms in the north of Indus-Tsangpo Suture Zone (ITSZ) in Ladakh range of northwest Indian Himalaya, referred herein Ladakh granitoids (LG), and associated magmatic rocks constitute the bulk of the Ladakh batholith. They have been characterized as Andean-type, calc-alkaline, largely metaluminous (I-type) to a few peraluminous (S-type) granitoids derived from partial melting of subducting materials. The LG can be broadly classified into coarsegrained facies with abundant mafics (hbl-bt), medium-grained facies with low content of mafics, and fine-grained leucocratic facies with very low amount of mafics. Mesocratic to melanocratic, rounded to elliptical, fine to medium grained, mafic to hybrid microgranular enclaves (ME) are ubiquitous in medium to coarse-grained LG. ME are absent or rare in the leucocratic variety of LG. In this paper different types of ME, and their field relation and microstructures with respect to felsic host LG are documented from northwestern, central, southeastern parts of the Ladakh batholith. Rounded to elongate ME of variable sizes (a few cm to metres across, mostly d<30 cm) commonly having sharp, crenulate, and occasionally diffuse contacts of ME with felsic host LG suggest that several pulses of crystal-charged mafic and felsic magmas coexisted, hybridized, and co-mingled into subvolcanic settings. Occurrence of composite ME (several small mafic ME enclosed into large porphyritic ME) strongly point to multiple mafic to hybrid magma intrusions into partly crystalline LG magma chambers. Synplutonic mafic dykes disrupted to form subrounded to angular (brecciated) mafic ME swarms commonly disposed in strike-length suggest mafic magma injections at waning stage of felsic magma evolution with large rheological contrasts. Pillowing of mafic melt against leucocratic (aplitic) residual melt strongly suggests mafic magma intrusion in nearly-crystallized condition of pluton. Although common mineral asemblages (hblbt-pl-kfs-qtz-ap-zrn-mt±ilm) of ME (diorite, quartzdiorite) and host LG (granodiorite, monzogranite) may relate to their cogenetic relation, fine to medium grained porphyritic (hybrid) nature and lack of cumulate texture of ME strongly oppose cognate origin for ME. Presence of plagioclase xenocrysts, quartz ocelli and accicular apatite in porphyritic ME strongly indicate mingling and undercooling of hybridized ME globules into relatively crystal-charged cooler host LG magma. Grain size differences of some ME, except to those of porphyritic ones, appear related to varying degrees of undercooling of ME most likely controlled by their variable sizes. Several smaller ME, however, lack fine-grained chilled margin probably because of their likely disaggregation from a large size ME during the course of progressive hybridization (mingling to mixing) leaving behind trails of mafic schlieren. Field and microstructural evidences at least suggest that Ladakh granitoids and their microgranular enclaves are products of multistage magma mingling and mixing processes concomitant fractional differentiation of several batches of mafic and felsic magmas formed in open magma chamber(s) of subduction setting.  相似文献   

15.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

16.
香加南山花岗岩基位于东昆仑造山带东段,岩基主要岩石类型为花岗闪长岩。千瓦大桥-加鲁河一带花岗岩体为香加南山岩基的重要组成部分。香加南山花岗岩基含大量暗色微粒包体,包体中捕掳晶丰富。千瓦大桥-加鲁河一带花岗岩体寄主岩中斜长石和暗色微粒包体中捕掳晶斜长石具正常环带,An值震荡变化,角闪石和黑云母Mg O含量和Mg#值较低,具壳源特征;暗色微粒包体中基质斜长石具核边结构,核部和边部An值存在间断,角闪石和黑云母Mg O含量和Mg#值较高,具幔源特征。LA-ICP-MS锆石U-Pb同位素定年结果显示千瓦大桥花岗闪长岩、暗色微粒包体和加鲁河辉长岩的结晶年龄分别为251.0±1.9Ma、252.8±3.0Ma和221.4±3.3Ma。千瓦大桥花岗闪长岩和加鲁河花岗闪长岩富集轻稀土元素(LREE)和大离子亲石元素(LILE),亏损高场强元素(HFSE),具较低的Mg#和Nb/Ta比值;从千瓦大桥到加鲁河花岗闪长岩呈现出由准铝质中钾钙碱性系列向准铝-弱过铝质中钾-高钾钙碱性系列演化;暗色微粒包体和加鲁河辉长岩轻重稀土元素分异程度相对较低,具较高的Mg#和Nb/Ta比值。千瓦大桥花岗闪长岩和加鲁河花岗闪长岩分别为古特提斯演化俯冲阶段和后碰撞阶段幔源岩浆底侵新生地壳使其部分熔融产物。镁铁质岩浆注入长英质岩浆的混合作用形成了暗色微粒包体。岩浆混合过程中,如果岩浆不完全混合,混合岩浆中混入物质除了长英质岩浆的残留岩浆和捕掳晶,还应该有镁铁质岩浆与长英质岩浆之间的元素梯度差导致的物质扩散;如果岩浆为近完全混合,混合岩浆近似为镁铁质岩浆和长英质岩浆以一定比例二元混合。东昆仑东段晚古生代-早中生代幔源岩浆对花岗质岩浆的影响是一个持续的过程,从俯冲阶段早期流体交代地幔熔融,到俯冲阶段后期板片断离,然后同碰撞阶段板片断离的持续影响,再到后碰撞阶段加厚地壳的拆沉作用,由于地球动力学体制不同,导致幔源岩浆影响的大小和特征不同。  相似文献   

17.
Mount Pinatubo in the Philippines, known for its cataclysmic eruption in 1991, hosts several porphyry copper deposits and active geothermal systems. An underlying mafic melt supplied much of the sulphur for the dacitic magma and its injection into the dacitic magma chamber triggered the eruption. The eruption caused purging of the sulphur-rich fluid from the dacite to the atmosphere and extensive fracturing. Similar events took place at Bingham Canyon, Utah, site of the largest copper and gold deposit in North America at 38 Ma. The Bingham Canyon mineralization took place beneath an active stratovolcano and pyroclastic flows contemporaneous with the mineralization show evidence for magma mingling. Ascent of mafic melt supplied sulphur and chalcophile elements to the felsic magma, which consolidated to form the Bingham stock and its underlying magma chamber. Injections of the mafic melt caused periodic eruptions of felsic magma to form the stratovolcano and deposition of sulphide minerals in highly fractured rocks in and around the stock.  相似文献   

18.
Mafic inclusions present in the rhyolitic lavas of Narugo volcano,Japan, are vesiculated andesites with diktytaxitic texturesmainly composed of quenched acicular plagioclase, pyroxenes,and interstitial glass. When the mafic magma was incorporatedinto the silica-rich host magma, the cores of pyroxenes andplagioclase began to crystallize (>1000°C) in a boundarylayer between the mafic and felsic magmas. Phenocryst rim compositionsand interstitial glass compositions (average 78 wt % SiO2) inthe mafic inclusions are the same as those of the phenocrystsand groundmass glass in the host rhyolite. This suggests thatthe host felsic melt infiltrated into the incompletely solidifiedmafic inclusion, and that the interstitial melt compositionin the inclusions became close to that of the host melt (c.850°C). Infiltration was enhanced by the vesiculation ofthe mafic magma. Finally, hybridized and density-reduced portionsof the mafic magma floated up from the boundary layer into thehost rhyolite. We conclude that the ascent of mafic magma triggeredthe eruption of the host rhyolitic magma. KEY WORDS: mafic inclusion; stratified magma chamber; magma mixing; mingling; Narugo volcano; Japan  相似文献   

19.
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.  相似文献   

20.
《International Geology Review》2012,54(10):1226-1245
Monzogabbro stocks including felsic enclaves (monzosyenite) around the Bafra (Samsun) area at the western edge of the Eastern Pontides cut Eocene-aged volcanic and sedimentary units. The monzogabbros contain plagioclase, alkali feldspar, clinopyroxene, olivine, hornblende, biotite, apatite, and iron-titanium oxides, whereas the felsic enclaves contain alkali feldspar, plagioclase, hornblende, biotite, clinopyroxene, and iron-titanium oxides. Mineral chemistry data suggest that magmas experienced hydrous and anhydrous crystallization in deep and shallow crustal magma chambers. Several thermobarometers were used to estimate temperatures of crystallization and emplacement for the mafic and felsic magmas. Clinopyroxene thermobarometry yielded 1100–1232 C and 5.9–8.1 kbar for monzogabbros, and 931–1109 C and 1.8–6.9 kbar for felsic enclaves. Hornblende thermobarometry and oxygen fugacity estimates reveal 739–971°C, 7.0–9.2 kbar and 10?9.71 for monzogabbros and 681–928°C, 3.0–6.1 kbar and 10?11.34 for felsic enclaves. Biotite thermobarometry shows elevated oxygen fugacity varying from 10?18.9–10?11.07 at 632–904°C and 1.29–1.89 kbar for monzogabbros, to 10?15.99 –10?11.82 at 719–873°C and 1.41–1.77 kbar for felsic enclaves. The estimated zircon and apatite saturation temperatures are 504–590°C and 693–730°C for monzogabbros and 765–775°C and 641–690°C for felsic enclaves, respectively. These data imply that several phases in the gabbroic and syenitic magmas did not necessarily crystallize simultaneously and further indicate that the mineral compositions may register intervals of disequilibrium crystallization. Besides, thermobarometry contrasts between monzogabbro and felsic enclave may be partly a consequence of extended interactions between the mafic and felsic magmas by mixing/mingling and diffusion. Additionally, the hot felsic magma was close to liquidus conditions (crystallinity < 30%) when injected into cooler mafic magma (crystallinity > 50%), and thus, the monzogabbro stocks reflect hybrid products from the mingling and incomplete mixing of these two magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号