首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the effect of primordial non-Gaussianity of the local f NL type on the auto- and cross-power spectra of dark matter haloes using simulations of the Λ cold dark matter cosmology. We perform a series of large N -body simulations of both positive and negative f NL, spanning the range between 10 and 100. Theoretical models predict a scale-dependent bias correction  Δ b ( k , f NL)  that depends on the linear halo bias   b ( M )  . We measure the power spectra for a range of halo mass and redshifts covering the relevant range of existing galaxy and quasar populations. We show that auto- and cross-correlation analyses of bias are consistent with each other. We find that for low wavenumbers with   k < 0.03  h  Mpc−1  the theory and the simulations agree well with each other for biased haloes with   b ( M ) > 1.5  . We show that a scale-independent bias correction improves the comparison between theory and simulations on smaller scales, where the scale-dependent effect rapidly becomes negligible. The current limits on f NL from Slosar et al. come mostly from very large scales   k < 0.01  h  Mpc−1  and, therefore, remain valid. For the halo samples with   b ( M ) < 1.5 − 2  , we find that the scale-dependent bias from non-Gaussianity actually exceeds the theoretical predictions. Our results are consistent with the bias correction scaling linearly with f NL.  相似文献   

2.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

3.
4.
We analyse 147 h of single-site CCD time series photometry of the multiperiodic low-amplitude δ Scuti star XX Pyx with the aim of investigating variability at low frequencies. Part of the data were obtained in the context of the 1998 multisite campaign on XX Pyx, the results of which were described by Handler et al. We find that periodic low-frequency variations are present in the XX Pyx light curves, and we detect two frequencies at f A=0.8695 cycle d−1 and f B=1.7352 cycle d−1 , respectively, with amplitudes of 4.5 and 5.4 mmag. The low-frequency variability is intrinsic to XX Pyx, and cannot be attributed to instrumental or atmospheric effects. The near 2:1 ratio of the frequencies leads us to suggest that XX Pyx is a δ Scuti star in a binary system, with a possible binary period of 27.6 h. This is strongly supported by the detection of radial velocity variations from the re-analysis of echelle spectra obtained by Handler et al. However, in the absence of a spectroscopic period, alternative explanations of the photometric variability involving pulsation are also possible; the variations occur close to possible combination frequencies of the short-period ( δ Scuti) variations, but high Q values of 0.57 and 0.28 d suggest that the variations are not a result of normal (p-)modes. They could possibly be due to g-modes excited to observable amplitudes as a result of resonance effects. Surface features (spots) are unlikely to be the cause of the variations.
We searched for combination frequencies (  f i − f j ) , f being the normal δ Scuti frequencies detected by Handler et al., but failed to detect any.  相似文献   

5.
We present the results of a spectroscopic multisite campaign for the β Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with eight different telescopes in a time span of 11 months. In addition, we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the slowly pulsating B-stars (SPB)-like g -mode with frequency 0.3428 d−1 reported before is detected in our spectroscopy. We identify the four main modes as  (ℓ1, m 1) = (1, 1), (ℓ2, m 2) = (0, 0), (ℓ3, m 3) = (1, 0)  and  (ℓ4, m 4) = (2, 1)  for   f 1= 5.178 964 d−1, f 2= 5.334 224 d−1, f 3= 5.066 316 d−1  and   f 4= 5.490 133 d−1  , respectively. Our seismic modelling shows that f 2 is likely the radial first overtone and that the core overshooting parameter  αov  is lower than 0.4 local pressure scale heights.  相似文献   

6.
Long-term X-ray variability of the low-luminosity active galactic nucleus of M81 was studied, using 16 ASCA observations spanning 5.5 yr. The object exhibits a factor of 3 variation over the 5.5 yr. The source intensity was relatively constant within each observation which lasted typically for one day, but intra-day variability by 30 per cent was detected on the 15th observation. The power-spectral density (PSD) was estimated in a 'forward' manner, over a frequency range of 10−8.2–10−4.3 Hz (period range of 0.25 d–5.5 yr), by utilizing the structure function and extensive Monte Carlo simulations in order to overcome the very sparse and uneven data samplings. When the PSD is assumed to be white below a 'break frequency' f b and falls off as ∝  f − α above f b, where f is frequency and α is a positive parameter, the M81 light curve is well described with 1/ f b≥800 d and α =1.4±0.2.  相似文献   

7.
We describe different methods for estimating the bispectrum of cosmic microwave background data. In particular, we construct a minimum-variance estimator for the flat-sky limit and compare results with previously studied frequentist methods. Application to the MAXIMA data set shows consistency with primordial Gaussianity. Weak quadratic non-Gaussianity is characterized by a tunable parameter   f NL  , corresponding to non-Gaussianity at a level of  ∼10−5 f NL  (the ratio of non-Gaussian to Gaussian terms), and we find limits of   f NL= 1500 ± 950  for the minimum-variance estimator and   f NL= 2700 ± 1650  for the usual frequentist estimator. These are the tightest limits on primordial non-Gaussianity, which include the full effects of the radiation transfer function.  相似文献   

8.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

9.
We search for ongoing major dry mergers in a well-selected sample of local brightest cluster galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry mergers, which are selected as pairs (or triples) with r -band magnitude difference  δ m r < 1.5  and projected separation   r p < 30 kpc  , and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average  ∼0.6 ( t merge/0.3 Gyr)−1  major dry mergers and through this process increases their luminosity (mass) by 15 per cent  ( t merge/0.3 Gyr)−1 ( f mass/0.5)  on average since   z = 0.7  , where t merge is the merging time-scale and f mass is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.  相似文献   

10.
An analysis of the X-ray variability of the low-luminosity Seyfert nucleus NGC 4395, based on a long XMM–Newton observation, is presented. The power spectrum shows a clear break from a flat spectrum  (α≈ 1)  to a steeper spectrum  (α≈ 2)  at a frequency   f br= 0.5–3.0 × 10−3 Hz  , comparable to the highest characteristic frequency found previously in a Seyfert galaxy. This extends the measured   M BH− f br  values to lower M BH than previous studies of Seyfert galaxies, and is consistent with an inverse scaling of variability frequency with black hole mass. The variations observed are among the most violent seen in an active galactic nuclei to date, with the fractional rms amplitude  ( F var)  exceeding 100 per cent in the softest band. The amplitude of the variations seems intrinsically higher in NGC 4395 than most other Seyfert galaxies, even after accounting for the differences in characteristic frequencies. The origin of this difference is not clear, but it is unlikely to be a high accretion rate (   L / L Edd≲ 20  per cent for NGC 4395). The variations clearly follow the linear rms–flux relation, further supporting the idea that this is a ubiquitous characteristics of accreting black holes. The variations are highly coherent between different energy bands with any frequency-dependent time delay limited to ≲1 per cent.  相似文献   

11.
We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density, metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters  ( Z ∝ r −0.31)  , outside  ∼0.02 r 500  . The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a distinct population in which heating from feedback is required in addition to conduction. Under the assumption that non-CC clusters are thermally stabilized by conduction alone, we find the distribution of Spitzer conduction suppression factors, f c, to be lognormal, with a log (base 10) mean of  −1.50 ± 0.03  (i.e.   f c= 0.032  ) and log standard deviation  0.39 ± 0.02  .  相似文献   

12.
We report the Giant Metrewave Radio Telescope detection of H  i 21-cm absorption from the z ∼ 3.39 damped Lyman α absorber (DLA) towards PKS 0201+113, the highest redshift at which 21-cm absorption has been detected in a DLA. The absorption is spread over ∼115 km s−1 and has two components, at   z = 3.387 144(17)  and   z = 3.386 141  (45). The stronger component has a redshift and velocity width in agreement with the tentative detection of Briggs, Brinks & Wolfe, but a significantly lower optical depth. The core size and DLA covering factor are estimated to be ≲100 pc and f ∼ 0.69, respectively, from a Very Long Baseline Array 328-MHz image. If one makes the conventional assumption that the H  i column densities towards the optical and radio cores are the same, this optical depth corresponds to a spin temperature of T s∼[(955 ± 160) × ( f /0.69)] K. However, this assumption may not be correct, given that no metal-line absorption is seen at the redshift of the stronger 21-cm component, indicating that this component does not arise along the line of sight to the optical quasi-stellar object (QSO), and that there is structure in the 21-cm absorbing gas on scales smaller than the size of the radio core. We model the 21-cm absorbing gas as having a two-phase structure with cold dense gas randomly distributed within a diffuse envelope of warm gas. For such a model, our radio data indicate that, even if the optical QSO lies along a line of sight with a fortuitously high (∼50 per cent) cold gas fraction, the average cold gas fraction is low, ≲17 per cent, when averaged over the spatial extent of the radio core. Finally, the large mismatch between peak 21-cm and optical redshifts and the complexity of both profiles makes it unlikely that the z ∼ 3.39 DLA will be useful in tests of fundamental constant evolution.  相似文献   

13.
We test the consistency of estimates of the non-linear coupling constant f NL using non-Gaussian cosmic microwave background (CMB) maps generated by the method described in the work of Liguori, Matarrese & Moscardini. This procedure to obtain non-Gaussian maps differs significantly from the method used in previous works on the estimation of f NL. Nevertheless, using spherical wavelets, we find results in very good agreement with Mukherjee & Wang, showing that the two ways of generating primordial non-Gaussian maps give equivalent results. Moreover, we introduce a new method for estimating the non-linear coupling constant from CMB observations by using the local curvature of the temperature fluctuation field. We present both Bayesian credible regions (assuming a flat prior) and proper (frequentist) confidence intervals on f NL, and discuss the relation between the two approaches. The Bayesian approach tends to yield lower error bars than the frequentist approach, suggesting that a careful analysis of the different interpretations is needed. Using this method, we estimate   f NL=−10+270−260  at the 2σ level (Bayesian) and   f NL=−10+310−270  (frequentist). Moreover, we find that the wavelet and the local curvature approaches, which provide similar error bars, yield approximately uncorrelated estimates of f NL and therefore, as advocated in the work of Cabella et al., the estimates may be combined to reduce the error bars. In this way, we obtain   f NL=−5 ± 85  and   f NL=−5 ± 175  at the 1σ and 2σ level respectively using the frequentist approach.  相似文献   

14.
15.
The pulsating DA white dwarfs are the coolest degenerate stars that undergo self-driven oscillations. Understanding their interior structure will help us to understand the previous evolution of the star. To this end, we report the analysis of more than 200 h of time-resolved CCD photometry of the pulsating DA white dwarf star EC 14012−1446 acquired during four observing epochs in three different years, including a coordinated three-site campaign. A total of 19 independent frequencies in the star's light variations together with 148 combination signals up to fifth order could be detected. We are unable to obtain the period spacing of the normal modes and therefore a mass estimate of the star, but we infer a fairly short rotation period of  0.61 ±0.03 d  , assuming the rotationally split modes are  ℓ= 1  . The pulsation modes of the star undergo amplitude and frequency variations, in the sense that modes with higher radial overtone show more pronounced variability and that amplitude changes are always accompanied by frequency variations. Most of the second-order combination frequencies detected have amplitudes that are a function of their parent mode amplitudes, but we found a few cases of possible resonantly excited modes. We point out the complications in the analysis and interpretation of data sets of pulsating white dwarfs that are affected by combination frequencies of the form   f A + f B − f C   intruding into the frequency range of the independent modes.  相似文献   

16.
Using N -body simulations with a large set of massless test particles, we compare the predictions of two theories of violent relaxation, the well-known Lynden-Bell theory and the more recent theory by Nakamura. We derive 'weakened' versions of both the theories in which we use the whole equilibrium coarse-grained distribution function     as a constraint instead of the total energy constraint. We use these weakened theories to construct expressions for the conditional probability   Ki (τ)  that a test particle initially at the phase-space coordinate τ would end-up in the i th macro-cell at equilibrium. We show that the logarithm of the ratio   Rij (τ) ≡ Ki (τ)/ Kj (τ)  is directly proportional to the initial phase-space density   f 0(τ)  for the Lynden-Bell theory and inversely proportional to   f 0(τ)  for the Nakamura theory. We then measure   Rij (τ)  using a set of N -body simulations of a system undergoing a gravitational collapse to check the validity of the two theories of violent relaxation. We find that both the theories are at odds with the numerical results, both qualitatively and quantitatively.  相似文献   

17.
Frequencies of intermediate-degree f modes of the Sun seem to indicate that the solar radius is smaller than what is normally used in constructing solar models. We investigate the possible consequences of an error in radius on results for solar structure obtained using helioseismic inversions. It is shown that solar sound speed will be overestimated if oscillation frequencies are inverted using reference models with a larger radius. Using solar models with a radius of 695.78 Mm and new data sets, the base of the solar convection zone is estimated to be at a radial distance of 0.7135 ± 0.0005 of the solar radius. The helium abundance in the convection zone as determined using models with an OPAL equation of state is 0.248 ± 0.001, where the errors reflect the estimated systematic errors in the calculation, the statistical errors being much smaller. Assuming that the OPAL opacities used in the construction of the solar models are correct, the surface Z / X is estimated to be 0.0245 ± 0.0006.  相似文献   

18.
We present the results of a three-year Johnson V and Strömgren uvby H β photometric study of the δ Scuti star BR Cancri (BR Cnc). Our data sets consist of 1293 discrete differential magnitudes in Johnson V and yellow y filters, 883 in Strömgren v and 239 in ub filters. The Fourier analysis of the data suggests four pulsation frequencies for the variable: f 1=24.978, f 2=11.358, f 3=11.808 and f 4=27.914 cycle d−1. During the three observing years, the main frequency f 1 kept its V ( y ) amplitude constant at about 6 mmag but its v amplitude seems to be changing. Amplitude variations for all the three other frequencies are also claimed. The pulsation modes of the frequencies are discussed based on the colour data. Using uvbyβ data and calibrations in the literature, we derive the physical parameters for BR Cnc.  相似文献   

19.
We report on the analysis of the photometric and spectroscopic properties of a sample of 29 low-redshift  ( z < 0.6)  QSOs for which both Hubble Space Telescope ( HST ) WFPC2 images and ultraviolet HST   FOS spectra are available. For each object we measure the R -band absolute magnitude of the host galaxy, the C  iv (1550 Å) linewidth and the 1350 Å continuum luminosity. From these quantities we can estimate the black hole (BH) mass through the   M BH– L bulge  relation for inactive galaxies, and from the virial method based on the kinematics of the regions emitting the broad-lines. The comparison of the masses derived from the two methods yields information on the geometry of the gas emitting regions bound to the massive BH. The cumulative distribution of the linewidths is consistent with that produced by matter laying in planes with inclinations uniformly distributed between ∼10° and ∼50°, which corresponds to a geometrical factor   f ∼ 1.3  . Our results are compared with those of the literature and discussed within the unified model of active galactic nuclei.  相似文献   

20.
A multifrequency analysis of the SX Phoenicis star BL Camelopardalis is presented on the basis of new high-speed photometry, along with fitting a total of 136 maxima. BL Cam is a multiple periodic pulsator. We find f 0=25.5768, f 1=25.2982, f 2=25.8622, f 3=31.5912, f 4=25.1065, f 5=25.5147 and f 6=25.6188 cycle d−1 together with the harmonics 51.1513 and 76.7268 cycle d−1 and combination frequencies f 0+ f 1, f 0+ f 2 and f 0+ f 3. The new frequency solution represents the light curves of BL Cam quite well. The observed minus calculated (O-C) analysis indicates that the fundamental frequency is in good agreement with the results of Fourier analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号